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Abstract. The previously suggested quasi-discrete model for heating and evaporation of
complex multi-component hydrocarbon fuel droplets is described. The dependence of density,
viscosity, heat capacity and thermal conductivity of liquid components on carbon numbers n and
temperatures is taken into account. The effects of temperature gradient and quasi-component
diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal
Conductivity /Effective Diffusivity (ETC/ED) model. This model is applied to the analysis of
Diesel and gasoline fuel droplet heating and evaporation. The components with relatively close
n are replaced by quasi-components with properties calculated as average properties of the a
priori defined groups of actual components. Thus the analysis of the heating and evaporation
of droplets consisting of many components is replaced with the analysis of the heating and
evaporation of droplets consisting of relatively few quasi-components. It is demonstrated that for
Diesel and gasoline fuel droplets the predictions of the model based on five quasi-components are
almost indistinguishable from the predictions of the model based on twenty quasi-components
for Diesel fuel droplets and are very close to the predictions of the model based on thirteen
quasi-components for gasoline fuel droplets. It is recommended that in the cases of both Diesel
and gasoline spray combustion modelling, the analysis of droplet heating and evaporation is
based on as little as five quasi-components.

1. Introduction
In a number of our earlier papers it was demonstrated that the choice of the model for droplet
heating and evaporation leads to a noticeable effect on the predicted autoignition delay in
Diesel fuel sprays [1, 2|. It was pointed out that a widely used model for droplet heating
and evaporation, based on the assumption that the liquid thermal conductivity is infinitely
large, leads to considerable overestimation of the autoignition delay, especially for high gas
temperatures. It was recommended that the effect of the finite value of this conductivity be
taken into account in spray autoignition modelling using the Effective Thermal Conductivity
(ETC) model [3].

One of the main limitations of the analysis presented in [1, 2] is that it was based on the
assumption that Diesel fuel can be approximated as a mono-component fuel. This assumption
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is obviously too crude for realistic Diesel fuels which consist of hundreds of various components.
The models suggested in the literature to deal with such complex fuels are based on the
probabilistic analysis of a large number of components (e.g. Continuous Thermodynamics
approach [4]-[11], the Distillation Curve Model [12], the combination of the Continuous
Thermodynamics approach and the Discrete Component Model [13], and the Quadrature
Method of Moments [14, 15]). All these models, however, are based on a number of additional
simplifying assumptions, including the assumption that species inside droplets mix infinitely
quickly or do not mix at all. As follows from our analysis of heating and evaporation of bi-
component droplets [16, 17], this assumption can lead to large errors.

A new approach to the modelling of heating and evaporation of multi-component droplets,
suitable for the case when a large number of components is present in the droplets, is suggested
in [18, 19]. This approach is based on the introduction of quasi-components, which are treated
as hypothetical components, but the number of these quasi-components is much smaller than
the number of actual components. In contrast to the previously suggested models, designed for
large numbers of components, the new model takes into account the diffusion of liquid species
and thermal diffusion. This model was called the ‘quasi-discrete model’.

Despite a number of limitations, we believe that it is the most advanced approach when
compared with others suggested for the modelling of heating and evaporation in complex
hydrocarbon sprays, including Diesel and gasoline fuel sprays. The modelling of heating and
evaporation of these sprays is integral to the modelling of their autoignition.

The aim of this paper is to present a brief summary of the essence of this model and show
some new results.

2. Quasi-discrete model
As in the case of the Continuous Thermodynamics approach, the quasi-discrete model is based
on the introduction of the distribution function f,,(I) such that:

I
Fm(D)dl =1, (1)
I
where [ is the property of the component, f,, characterises the relative contribution of the
components having this property in the vicinity of I, Iy and I are limiting values of this
property.

Although molar mass M is almost universally used to describe the property I, this choice
is certainly far from being a unique one. Remembering that most practically important
hydrocarbon fuels consist mainly of molecules of the type C,Ha, 2 (alkanes), where n > 5
for liquid fuels, it is more practical to write the distribution function f,, as a function of the
carbon number n rather than M [9]. Note that

M = 14n + 2, (2)

where M is measured in kg/kmole.
As in [18] we assume that f,,,(n) can be approximated as:

e (452

where ng < n < ny, subscripts g and f stand for initial and final, I'(«) is the Gamma function,
«a and 3 are parameters that determine the shape of the distribution, «v determines the original

shift, -
Cin(no,ns) = {/n:f %exp [_ (%)] dn} . (4)

fm(n) = Cm(no, ny) 3)
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This choice of Cy, assures that [/ fi,(n)dn = 1.
As in [18] we use the following approximation for the dependence of the saturation vapour
pressure (in MPa) on n:

P () = exp (A(n) - (5)
where T is in K,
A(n) = 6.318 "1 B(n) = 1178192 C(n) = 9.467 n® 9,
From the Clausius-Clapeyron equation it follows that [9]

R, dInp(n)

L="%w —ajz) (6)

where R, is the universal gas constant. Remembering (5), Formula (6) can be rewritten as:

R,B(n)T?

L= ST —cmr @)

Following [18], this formula will be used in our analysis.

In [18] the dependence of liquid density, viscosity, specific heat capacity and thermal
conductivity on n was ignored. In our analysis this dependence is taken into account, following
[19], based on published data for liquid density [20], viscosity [21], specific heat capacity [22]
and thermal conductivity [23] (see Figs. A1-A4 of [19]).

As follows from (5), (7) and the results for liquid density, viscosity, specific heat capacity and
thermal conductivity, the transport and thermodynamic properties of the fuel components are
relatively weak functions of n. In this case, following [18, 19], it would be sensible to assume
that the properties of hydrocarbons in a certain narrow range of n are close, and replace the
continuous distribution (3) with a discrete one, consisting of Ny quasi-components with carbon

numbers ,
fo , nfm(n)dn

the corresponding molar fractions

nj
Xj= [ fuln)dn (9)
nj_1
and mass fractions M(FX
j= j=Nf(n])—] ’ (10)
2= [M(my) X

where j is an integer in the range 1 < j < Ny. We assume that all n; — n;_; are equal, i.e. all
quasi-components have the same range of values of n. For the case when Ny = 1 this approach
reduces the analysis of multi-component droplets to mono-component ones.

These new quasi-components are not the actual physical hydrocarbon components (7z; are not
integers in the general case). Hence we called this model a quasi-discrete model. These quasi-
components are treated as actual components in the conventional Discrete Component Model,
including taking into account diffusion of liquid species in droplets. This model is expected to be
particularly useful when Ny is much less than the number of actual species in the hydrocarbon
mixture.
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Partial pressures of individual quasi-components can be estimated as (Raoult’s law is assumed

to be valid):
po(71) = Xisi(1))p™" (7)), (11)

where X, is the molar fraction of liquid quasi-components at the surface of the droplet, p5a* (1)
is determined by Eq. (5).

Having replaced n with ; we obtain the required values of p*t L, liquid density, viscosity,
specific heat capacity and thermal conductivity for all quasi-components.

Note that, strictly speaking, the viscosity and thermal conductivity of the mixture are not
equal to those for 7; (see [24] for details). The difference between them, however, is expected
to be relatively small and will be ignored in our analysis.

3. The diffusion of quasi-components
Equations for mass fractions of quasi-components Y; = Y;(¢, R) inside droplets are used in the

following form:
Y; 2y, 20Y;
8]_Dl<a f 8]>’ (12)

ot OR? " ROR

where j > 1, D; is the liquid mass diffusivity. Eq. (12) is solved with the following boundary
condition [16, 17]:

0Y;
ale; = Yjs) = =Dy 57 , (13)
T OR |r=r,—0

and the initial condition Y;(t = 0) = Yjo(R), where Yj3 = Yjs(t) are liquid components’ mass

fractions at the droplet’s surface,

14|

= 14
T (14)

Ry is the droplet radius, mq is the rate of mass loss by droplets, p; is the total liquid density.
Assuming that species concentrations in the ambient gas are equal to zero (Y, = 0), the
values of €; can be found from the following relation [16]:

_ }/vjs
Zj K)js ’

€ (15)

where the subscript , indicates the vapour phase. We assume that ¢; are still defined by Eq. (15)
even in the case when these concentrations are not equal to zero, which is expected in the case
of a coupled solution. In contrast to a widely used approach, based on the numerical solution
to Eq. (12), our analysis is based on its analytical solution [16, 17]:

1 o\ ?
Yi=¢€+ = { [GXP [Dl (R—i]l) 75] [gi0 — Qoe;] sinh (%%)

+ni::1 lexp [—Dl (%;)2 t] [Gin — Qne;] sin ()\n]%)] } ; (16)

where A\g and \,, (n > 1) are solutions to equations

A A
tanh \ = —h—o and tan)\ = —h—o.
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respectively, hg = — (1 + O‘TRld) ,

ke (B4)" (14 o) sinh Ao whe —0
0, =1 “Tr X 0 o whemo = (17)
Hving (%‘f (14 ho)sin Ay, when n>1
R
vo(R) = sinh ()\0}%> ,  Up(R) =sin ()\n}%> , n>1.

The average mass fraction of species in a moving droplet can still be correctly predicted by
Equation (12), with appropriate boundary conditions, if the liquid diffusivity D is replaced with
the so-called effective diffusivity Deg

Dest = xy Di, (19)
where the coefficient yy varies from 1 to 2.72 and can be approximated as:
Xy = 1.86 + 0.86 tanh [2.225 log; 5 (Re;Sc;/30)], (20)

Re; is the Reynolds number, based on liquid transport properties and the maximum surface
velocity inside droplets, Sc; is the liquid Schmidt number.

The analytical solution (16) is incorporated into the numerical scheme when the effect of
droplet evaporation is taken into account. Recirculation inside droplets is taken into account
based on the Effective Thermal Conductivity /Effective Diffusivity (ETC/ED) model [16, 17].
The solution described in [16, 17] has been generalised in [25] to take into account the effect of
the moving droplet boundary due to the evaporation process.

4. Application to Diesel and gasoline fuel droplets
Following [9] we assume the following values of parameters for the distribution function (3) for
Diesel and gasoline fuels.

Fuel a | B (kg/kmole) | v (kg/kmole) | ng | ny
Diesel 18.5 10 0 5 | 25
Gasoline || 5.7 15 0 5 |18
Table 1

As in [18, 19|, we assumed that the initial Diesel fuel droplet temperature is equal to 300
K, and is homogeneous throughout its volume. Gas temperature and pressure are assumed to
be equal to 880 K and 3 MPa respectively. The initial composition of droplets is described by
distribution function (3) with the values of parameters given in Table 1.

Plots of droplet surface temperature T and radius Ry versus time for the initial radius equal
to 10 pm and velocity 1 m/s are shown in Fig. 1. The droplet velocity is assumed to be constant
during the whole process. The calculations were performed for the case of Ny = 1 (one quasi-
component droplet, @ = 12.56), Ny = 5 (five quasi-component droplet) and Ny = 20 (twenty
quasi-component droplet), using the ETC/ED model. The latter case is expected to reproduce
adequately the properties of actual Diesel fuels [9].

As one can see from this figure, the droplet radii R; and surface temperature T, predicted
by the ETC/ED model, using one and twenty quasi-components are noticeably different,
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Figure 1. Plots of Ts and Ry, predicted by the ETC/ED model, versus time for 1, 5 and 20
quasi-components. The initial droplet radius and temperature are assumed to be equal to 10
pum and 300 K respectively; the droplet velocity is assumed to be equal to 1 m/s and its changes
during the heating and evaporation process are ignored; gas temperature is assumed equal to

880 K.
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Figure 2. The same as Fig. 1 but for gasoline fuel droplets with velocity equal to 10 m/s, gas
temperature equal to 450 K and pressure equal to 0.3 MPa.

especially at the final stages of droplet heating and evaporation. The model, using twenty
quasi-components predicts higher surface temperatures and longer evaporation time compared
with the model using one quasi-component. This can be related to the fact that at the final
stages of droplet evaporation the species with large n become the dominant. These species
evaporate more slowly than the species with lower n and have higher wet bulb temperatures. At
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the same time, the predictions of the model using just five quasi-components are almost identical
with the predictions of the model using twenty quasi-components, in agreement with the earlier
results reported in [18].

Plots similar to those shown in Fig. 1, but for gasoline fuel droplets in realistic conditions
for gasoline engines, are presented in Fig. 2. Following [26], we assume that gas temperature is
equal to 450 K, gas pressure is equal to 0.3 MPa and droplet velocity is equal to 10 m/s. As
in the case shown in Fig. 1, we assumed that the initial droplet temperature is equal to 300 K,
and is homogeneous throughout its volume, while the droplet initial radius is equal to 10 pm.

The calculations were performed for the case of Ny = 1, Ny = 3, Ny = 5 and Ny = 13,
using the ETC/ED model. The latter case is expected to reproduce adequately the properties
of actual gasoline fuels [9].

Comparing Figs. 1 and 2, one can see that in the latter case the difference between the
predicted temperatures and droplet radii for one and thirteen quasi-components is much more
visible than in the former. This can be attributed to much slower evaporation for the case shown
in Fig. 2, compared with the case shown in Fig. 1. At the same time, the predictions of the model
using just three and especially five quasi-components are reasonably close to the predictions of
the model using thirteen quasi-components. The general trends of the curves shown in Fig. 2 are
similar to the ones shown in Fig. 1. In the case when thirteen quasi-components are considered,
at the end of the evaporation process, mainly the heavier components in the droplets remain.
These can reach higher temperatures and evaporate more slowly compared with the light and
middle-range components.

Note that the analysis described above is based on the hydrodynamic model for droplet
evaporation. The kinetic and molecular dynamic effects will be taken into account during further
developments of this model. Some of the most recent results in this direction are described in
[27, 28].

5. Conclusions

The previously suggested quasi-discrete model for heating and evaporation of complex multi-
component hydrocarbon fuel droplets is described. The dependence of density, viscosity, heat
capacity and thermal conductivity of liquid components on carbon numbers and temperatures
is taken into account. This model is applied to the modelling of Diesel and gasoline fuel droplet
heating and evaporation.

The model is based upon the assumption that properties of the components vary relatively
slowly from one component to another and depend on a single parameter: the number of
carbon atoms in the components (carbon number: n). The components with relatively close
n are replaced with quasi-components with properties calculated as average properties of the a
priori defined groups of actual components. Thus the analysis of the heating and evaporation
of droplets consisting of many components is replaced with the analysis of the heating and
evaporation of droplets consisting of relatively few quasi-components. The effects of temperature
gradient and quasi-component diffusion inside droplets are taken into account. The analysis is
based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model.

It is demonstrated that for Diesel fuel droplets the predictions of the model based on five
quasi-components are almost indistinguishable from the predictions of the model based on twenty
quasi-components (maximal number of quasi-components). These are noticeably different from
the predictions of the model, based on one quasi-component, widely used in spray combustion
modelling. A similar conclusion was drawn for gasoline fuel droplets with the maximal number
of quasi-components equal to thirteen. It is recommended that in the cases of both Diesel and
gasoline spray combustion modelling, the analysis of droplet heating and evaporation is based
on five quasi-components.
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