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Abstract. In this paper one column of a telescopic construction of a bell tower is investigated. 
The hinges at the support of the column and at the connecting joint between the upper and 
lower columns are modelled with rotational springs. The characteristics of the springs are 
assumed to be non-linear and the hysteresis property of them is represented with the Preisach 
hysteresis model. The mass of the columns and the bell with the fly are concentrated to the top 
of the column. The tolling process is simulated with a cycling load. The elements of the 
column are considered completely rigid. The time iteration of the non-linear equations of the 
motion is evaluated by the Crank-Nicolson schema and the implemented non-linear hysteresis 
is handled by the fix-point technique. The numerical simulation of the dynamic system is 
carried out under different combination of soft, medium and hard hysteresis properties of 
hinges.  

1. Introduction 
Several engineering problems deal with the modelling of the non-linear behaviour of systems. The 
non-linear property of the engineering structures can be handled by single-valued or two-valued 
hysteretic characteristics. Generally two questions arise here, how to model the non-linear, hysteretic 
characteristics of the structure and how to insert this model into the simulation method of the system. 

The non-linearity of thermal, magnetic and mechanical systems can be realized with microscopic, 
mesoscopic and macroscopic simulations. The simplest representation of non-linear characteristics is 
the macroscopic model, where the purpose is the phenomenological description of the physical 
process. On the other hand a more detailed approach to describe the non-linear behaviour of the 
structure or material is the microscopic model, where the elementary scale of the material is simulated 
from the energetic point of view. The non-linearity of material domains/clusters can be analysed by 
the Stoner-Wohlfarth type [1] and the Jiles-Atherton type models [2]. The mesoscopic description of 
the hysteresis behaviour with respect to some physical properties can be found in the Preisach type 
models [3]-[10], which is the most popular modelling of non-linearity of materials and structures.  

The above-summarized general trend can also be found in the simulation of non-linear behaviour of 
mechanical systems. 

To handle the non-linearity of joints in steel frames different phenomenological models have been 
developed. The range of these models varies from the so-called empirical models through the 
analytical simulations [11], [12] to the very popular different level of the Ramberg-Osgood and the 
Richard-Abbott models [13]-[19]. To build up the material from elementary clusters and modelling 
their mechanical behaviour is developed in microscopic models in Reference [20]. To represent the 
hysteresis of steel due to the stress and strain effects the modified versions of Jiles-Athertom models 
can be used [21], [22] and in the modified models with loss separation under different stresses [23]. 
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There is a continued research to extend the Preisach model for the simulation of mechanical properties 
of materials and to describe the non-linear behaviour of steel structures [24]-[26]. 

The purpose of the recent research is to extend the Preisach model for the theoretical investigation 
of semi-rigid joints of hinges in a two storey steel column structure and insert the model into the 
computation of the column systems.  

2. The bell tower 
In Pécs, city of Hungary, there is a Turkish style mosque on the main square of the city centre, which 
functions as a Christian church nowadays. Pécs was the Cultural Capital of Europe in 2010. During the 
preparation period of this event a bell tower has been designed to the northeast corner of the mosque 
with the statue of St. Bartholomew (figure 1) by two architects: Zoltan Bachman and Balint Bachmann 
[27]. The three bells are surrounded by three slender steel columns. The bell tower has a moving 
telescopic structure, which can hydraulically rise to become a tower (figure 2). The designed form of 
the bell tower can be seen in figure 3. 

Considering the structure of the bell tower, two sensitive points should be investigated during the 
tolling action, the fixed support at the bottom and the joint between the lower and upper columns. To 
model the behaviour of this dynamic system, first, one column with semi rigid hinges of non-linear 
hysteretic characteristic is modelled. In this way it is possible to check how the hinges behave during 
the dynamic action.  

   
Figure 1. St Bartholomew’s 

bell tower. 
Figure 2. The telescopic height 

of the bell tower. 
Figure 3. The designed form of 

the bell tower. 

3. The model of the dynamic system 
In this paper one column of the bell tower is modelled. It is built from two cylindrical shape tubes with 
the lower part of diameter m 3.01 =exd  and the thickness is mm 8  ( m 284.01 =ind ). The upper part 
has diameters m 282.02 =exd  and m 266.02 =ind . The length of the lower column is m 35.51 =l , 
while the upper column is m 82 =l  long. The masses 1m , 2m  of the columns are concentrated to the 
upper end of the columns. The mass of the bell (290 kg) and the fly (40 kg) (figure 4) is added to the 
mass of the upper column. 

As a result of the cycling external force the columns have declinations angles 1ϕ , 2ϕ  around of the 
joint points, resulting in deflections 1u , 2u  (figure 5). Considering small declination lu  ϕ≈ , 
( ϕϕϕ ≈≈ tansin , 1cos ≈ϕ ) a bending moment from the external cycling force and from the mass of 
the columns arises. 
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To model the moment of the electrical motor for forcing the bells to toll, a concentrated, horizontal, 
exponentially increasing, periodically changing force is acting during the tolling process with the 
amplitude kN 10 =F  (figure 6) and cycling periodicity s 2.0=pT , 
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Figure 4. The 

column system. 
Figure 5. Deflection and 

declination of the columns. 
Figure 6. The cycling load of the 

columns. 

The two parts of the column can be considered as a semi rigid cantilever. The bottom point of the 
lower column (point A) and the joining point between the two columns (point B) are modelled with 
rotational springs. The behaviour of the rotational springs is modelled with hysteresis characteristics 
between the spring moment (P) and the declination angle (ϕ ), { }PH=ϕ . During the investigations 
three types of characteristics are considered for the rotational springs as soft (H1), medium (H2) and 
hard (H3) as it can be seen in figure 7. 

In mechanical systems the characteristics of spring moment-declination angle are used, however in 
this case the Preisach hysteresis model is introduced to describe the behaviour of the rotational 
springs, so the inverse hysteresis is constructed (figure 8). 

  

Figure 7. Direct characteristics of the rotational 
springs. 

Figure 8. The Preisach model of hysteresis. 

Introducing the elementary hysteron ( )βαγ ,  of the Preisach model for handling the non-linear 
behaviour of the elementary cluster of the rotational spring, where βα ,  are the switching fields, the 

distribution function ( )βαµ ,  weights the effect of the elementary operator ( )βαγ , , while ( )tP  is the 

H1

H2

H3 H1 

H2 

H3 
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acting spring moment [28]. The declination angle as the output of the non-linear spring can be 
determined as 

 ( ) ( ) ( ) ( )∫∫=
≥βα

βαβαγβαµϕ ddtPPt   ,,, . (2) 

The integration is evaluated over the Preisach triangle, defined as b≥α , while ]1,,1[ L−∈α , 
]1,,1[ L−=β . 

4. Formulation of the dynamic motion 
The elements of the steel columns are considered to be completely rigid. To describe the dynamic 
behaviour of the above system, the relation between the bending moment and the declination has to be 
determined. As the system plotted in figure 4 has two bars with two hinges at points (A) and (B), the 
motion will be determined by the bending moment acting at these points [29], [30]. The system 
damping effect is represented with the hysteresis loss. 

The acting bending moment originating from the external force and the mass positioned to the top 
end of the columns accelerates the rotation and acts on the rotational spring at point (A) as 

 ( ) ( ) ,112122111122 uGuuGllFPII AA ++++=++ ϕϕ &&&&  (3) 

where AI1  and AI2  are the inertia moments of mass 1m  and 2m  at point A, 

 ,)(, 221222
111 llmIlmI AA +==  (4) 

1P  is the bending moment action on the rotational spring at point (A) and 21,GG  are the gravity forces 
of 21, mm . 

At point B the upper column acts and the acceleration of rotation can be formulated as 

 ,222222 uGFlPI b +=+ϕ&&  (5) 

where BI2 is the inertia moment of mass 2m  at point B, 

 2
222 lmI B = . (6) 

Taking into account the condition of small declination and representing the deflections as 

 222111 , lulu ϕϕ == , (7) 

the second order non-linear differential equations have the form of: 
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 { } { }., 2211 PP HH == ϕϕ  (9) 

5. Numerical iteration 
An analytical solution of the above dynamic problem can be determined as it is proved in [31]. For the 
numerical approximation of the dynamic problem (8), (9) the time discretisation is evaluated by the 
double application of the Crank-Nicolson schema [32]. The non-linear iteration is realized by the fix-
point technique [33], [34] to have a contract transformation of the direct characteristics 

 ( ) RkP FP += ϕϕ , (10) 
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where FPk  is the fix-point constant to represent the linear part of the connection stiffness, ϕFPk  and 
R  is the residual non-linearity. Substituting (10) into (8) at a fixed time moment, n , 
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where i
nAM  and i

nBM  are the bending moments at points (A) and (B), at time moment n  of iteration 

step i  
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The iteration steps are as follows: 
Step 1, At the new −n th time step the initial value of the declination angle is equal to the last value 

of the previous time step, 1−= nin ϕϕ . The initial value of the non-linear part of the hysteresis 

is equal to the last value of the previous time step, 1−= nin RR ; 
Step 2, The value of the acting bending moments are known from (12) with respect to the iteration 

of declination inϕ ; 

Step 3, With the solution of (11) a new iteration for the declination 1+inϕ  can be determined; 
Step 4, An estimation for the bending moment acting on the rotational spring can be determined as 

ininFPin RkP +≈ ++ 11 ϕ ; 
Step 5, With the hysteresis (9) the remaining non-linear part can be calculated as 

{ }111 +++ ⋅−= inFPinin PkPR H ; 

Step 6, The iteration continues on while 11 ++ >− ininin RRR ε , otherwise 1+= inin xx , 1+= inin RR  and 

go to Step 2. 

6. Simulation results 
The numerical realization of the above theory has been developed in MATLAB code and the 
hysteresis has been introduced to the numerical iteration. 

In all cases the time interval of the investigation is 3 s. The cycling time was selected as 0.2 s, in 
one period 20 time steps have been investigated, so the time discretisation was 0.01 s. 

According to the different techniques to connect the elements of the telescopic construction and to 
fix the support of the bottom column, different properties of the rotational springs at points (A) and 
(B) have been considered. In table 1 the properties of the investigated rotational spring configurations 
are listed.  

Table 1. Rotational springs at the nodes 
Case 1 2 3 4 5 
Point A H2 H2 H1 H1 H2 
Point B H2 H3 H2 H3 H1 

 
Case 1: First, it is assumed that both of the rotational springs have the same non-linearity, the 

hysteresis characteristics are assumed to be medium type (H2) at points (A) and (B). 
At point (A) the variation of the declination angle versus the spring moment can be seen in figure 

9, while at point (B) the hysteresis of the rotational spring generated between the declination angle and 
the spring moment is plotted in figure 10. 
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Figure 9. The hysteresis of the rotational 
spring at point (A). 

Figure 10. The hysteresis of the rotational 
spring at point (B). 

From the figures it can be seen, that although both of the rotational spring has the same property, 
according to the different loads and positions, the two springs have different hysteresis. At the bottom 
point (A) of the lower column the rotation of the spring is more intensive compared to the spring at the 
joint between the upper and lower columns, point (B). 

Similar properties are shown by the deflections of the end points of columns at points (B) and (C). 
According to the acting force the end points of the columns have deflection 1u  at the joint of the 
columns (B) and 2u  at the top point of the upper column (C), as it can be seen in figure 11 and 
figure 12.  

  

Figure 11. Deflection at point (B). Figure 12. Deflection at point (C). 

The deflection at the end point of the structure is more intensive; within the 3 s tolling period the 
maximum value of deflection at the free end of the structure is about 3 mm, while the maximum 
deflection at the joint point between the upper and lower columns is about 2 mm. 

Case 2: In the next case the rotational spring at the fixed point of the bottom column, point (A), 
remains the same as before, medium style (H2), while at the joint point between the upper and lower 
columns, point (B), the rotational spring has hard properties (H3). Loading the system with the same 
external force and evaluating the simulation under the same time steps, the rotational hysteresis at the 
bottom point (A) is plotted in figure 13, while the rotational hysteresis of the spring at point (B) is 
plotted in figure 14. 

From the figures it can be seen, that if the joint point between the upper and lower columns is fixed 
harder than the bottom point of the column, the declination angles at both points (A) and (B) are 
decreasing. 
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Considering the deflections of point (B) and at the free end of the column system, point (C), at both 
places the deflections are decreasing as well, as it can be seen in figure 15 and figure 16. The 
maximum deflection at point (B) is about 1.2 mm, while at the free end of the column (C) this 
deflection is about 1.6 mm. 

  

Figure 13. The rotational spring of medium 
property at point (A). 

Figure 14. The rotational spring of hard 
property at point (B). 

 

  

Figure 15. Deflection at the middle point of 
the column, at point (B). 

Figure 16. Deflection at the free end of the 
column, at point (C). 

Case 3: Now the rotational spring at the fixed point of the bottom column, point (A), is selected to 
have weak property (H1), while at the joint point between the upper and lower columns, point (B), the 
rotational spring has medium property (H2). 

For the cycling external force in this case during the motion of the column the hysteresis of the 
hinges became more stable as it can be seen in figure 17 and figure 18. 

Similar stable cycling motion can be observed in the deflections at the joining point between the 
upper and lower columns, point (B), and at the free end of the column, point (C), as it is plotted in 
figure 19 and figure 20. 

From the figures it can be seen, that however at the fixed point of the bottom column, point (A), the 
rotational spring has soft property (H1), and at the joint point between the upper and lower columns, 
point (B), the rotational spring has medium property (H2), the deflections became smaller. At point 
(B) its maximum value after the first peak is about 1.0 mm, while at point (C) the maximum value of 
the deflection is about 1.5 mm. 
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Figure 17. The rotational spring of soft 
property at point (A). 

Figure 18. The rotational spring of medium 
property at point (B). 

 

  

Figure 19. Deflection of the column at  point 
(B). 

Figure 20. Deflection at the free end of the 
column, at point (C). 

Case 4: The stabilization of the cycling motion can be observed if at the joint point between the 
upper and lower columns the property of the rotational spring is harder than the property of rotational 
spring at the fixed point of the bottom column. So, in this case the rotational spring at the fixed point 
of the lower column, point (A), remain soft (H1), while at the joint point between the upper and lower 
columns, point (B), the rotational spring is supposed to have hard property (H3). 

The hysteresis curves of rotational springs seem to be stabilized during the tolling action as it can 
be seen at the rotational spring of point (A) in figure 21 and at the rotational spring of point (B) in 
figure 22. 

The hysteresis curves contain some offset during the motion, which can be explained by the mass 
positioned at the end of each column. The bending moments generated by the gravity force has a 
constant load on the system and this is added to the cycling load and it results in the offset in the 
declination and deflection as well. 

The deflection at the joint of the columns (point B) and at the free end of the upper column (point 
C) is plotted in figure 23 and figure 24. 

From the figures it can be seen, that under cycling load, at the joining point between the upper and 
lower columns, point (B), the stabilization of the dynamic system results in the maximum deflection 
with amplitude about 1.1 mm and at the free point of the column, point (C), the maximum deflection is 
about 1.6 mm. 
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Figure 21. The declination of the soft 
rotational spring at point (A). 

Figure 22. The declination of hard rotational 
spring at point (B). 

 

  

Figure 23. Deflection of the soft rotational 
spring at the joint point of the cantilevers, in 

point (B). 

Figure 24. Deflection of the hard rotational 
spring at he free end of the column system, in 

point (C). 

From the previous studies it can be seen that in all the cases if the rotational spring at the fixed 
point (A) of the bottom column is even softer than the rotational spring at the joint point between the 
upper and lower columns, point (B), during the dynamic process the system became stable, see figure 
13–14, figure 17-18 and figure 21-22. 

The hysteresis curve characterizing the declination of the rotational springs results in stable cycling 
motion with a small offset. In a similar way, the deflections at the joint of the columns (point B) and at 
the free end of the upper column (point C) prove to stabilize the elongation as it can be seen in figure 
15-16, figure 19-20 and figure 23-24. 

Case 5: In this case if the rotational spring at the fixed point of the bottom column (point A) has the 
same medium property (H2) as the rotational spring at the joining point between the upper and lower 
columns (point B), some tendency of instability can be observed as it is shown in figure 9-10. 

Thus, in the next case the property of the rotational spring at the joining point of the columns (point 
B) is selected to be softer (H1) than at the fixed point of the bottom column (point A), where the 
rotational spring is selected to have medium property (H2). 

After the numerical simulation at the fixed point of the bottom column (point A) as well as at the 
joint point of the columns the hysteresis curves definitely exhibit instability as it can be seen in figure 
25 and figure 26. According to the soft property of the rotational spring at point B during the cycling 
load the offset of the hysteresis curves is increasing, finally the failure of the upper column will occur. 
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Similar instability can be observed in the deflection at the joint of the columns (point B) as well as 
at the free end of the upper column (point C) as it is plotted in figure 27 and figure 28. 

  

Figure 25. The declination of the medium 
property of rotational spring (H2) at the fixed 

point of the column (point A). 

Figure 26. The declination of the soft property 
of the rotational spring (H1) at the joint point 

of the columns (point B). 

 

  

Figure 27. The deflection at the joint of the 
columns (point B). 

Figure 28. Deflection of the free end of the 
column (point C). 

According to the telescopic construction of the column in this last case instability can be observed 
in the behaviour of the bell tower. The instability can be observed in the deflection of the whole 
system as it is shown in figure 29. 

7. Conclusion 
In this research one column of a telescopic construction of a bell tower has been investigated. The 

hinges at the fixed support of the bottom column and at the joint of the columns have been modelled 
with rotational springs of hysteresis characteristics. The mass of the columns and the bell with the fly 
are concentrated to the top of each column. The tolling process is modelled with a cycling load. The 
elements of the column are considered to be completely rigid. The non-linear equation of motion is 
solved by the double application of the Crank-Nicolson schema; the iteration on the non-linear 
hysteresis characteristic is evaluated by the fix-point technique. 

Numerical simulations have been performed assuming the combination of different, soft, medium 
and hard hysteresis characteristics of hinges. The analytical results prove that in the case when at the 
fixed point of the bottom column the hinge has softer hysteresis characteristic than at the joint of the 
columns, the dynamic behaviour of the system can be stable. However, in the case when the hinge at 
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the joint of the columns is softer than the one at the fixed support of the bottom column, the instability 
of the system can be observed. 

  

Figure 29. The instability property of the construction under 
cycling load. 
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