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Abstract. The photoluminescence, its temperature dependences, as well as structural 
characteristics by methods of Scanning electronic microscopy (SEM) have been studied in 
ZnO:Ag nanorods prepared by the ultrasonic spray pyrolysis (USP). The PL spectra of the 
ZnO:Ag NRs over the temperature range from 10 K to 300 K are investigated. Three types 
of PL bands have been revealed: i) the near-band-edge (NBE) emissions, ii) defect related 
emission and iii) IR emissions. It is shown the IR emission corresponds to the second-order 
diffraction of the near-band-edge (NBE) emission bands. The study of NBE PL temperature 
dependences reveals that the acceptor bound exciton (ABE) and its second-order diffraction 
peak disappeared at the temperature higher than 200 K. The attenuation of the ABE peak 
intensity is ascribed to the thermal dissociation of ABE with appearing of a free exciton 
(FE). The PL bands, related to the LO phonon replica of FE and its second-order diffraction, 
dominate in the PL spectra at room temperature that testify on the high quality of the 
ZnO:Ag films prepared by the USP technology. 

1. Introduction 
Zinc oxide (ZnO) nanocrystals (NCs) with wide band gap energy (3.37 eV) have attracted great 
attention due to exceptional exciton properties (high exciton binding energy equal to 60 meV at 
300K) and a number of deep levels that emit in the whole visible range and, hence, can provide 
intrinsic “white” light emission. ZnO NCs are promising candidates for the different optoelectronic 
applications such as light emitting diodes [2-7]. The control of the ZnO defect structure in these 
nanostructures is a necessary step in order to improve the device quality. Since the structural 
imperfection and defects generally deteriorate the exciton related recombination process, it is 
necessary to grow the high quality films for efficient light-emitting applications. The ultrasonic 
spray pyrolysis (USP) method is a simple, inexpensive, non-vacuum and a low temperature 
technique for the film synthesis [8]. It will be interesting to study the optical emission of the USP 
produced ZnO nanostructures doped with Ag versus temperature in order to identify the best 
regimes for obtaining bright emitting NCs and the nature of optical transitions. 

2. Experimental details 
ZnO:Ag thin solid films were prepared by the USP technique on the surface of soda-lime glass 
substrate for the substrate temperatures 4000 C and different deposition times of 3, 5 and 10 min. 
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Using this technique the nanoparticle's size can be easily controlled by changing a concentration of 
starting solution and the atomization parameters. The deposition system includes a piezoelectric 
transducer operating at variable frequencies up to 1.2 MHz and the ultrasonic power of 120 W. 
ZnO:Ag thin solid films were deposited from a 0.4 M solution of zinc (II) acetate [Zn(O2CCH3)2] 
(Alfa), dissolved in a mix of deionized water, acetic acid [CH3CO2H] (Baker), and methanol 
[CH3OH] (Baker) (100:100:800 volume proportion). Separately, a 0.2 M solution of silver nitrate 
[Ag(NO3)] (Baker) dissolved in a mix of deionized water and acetic acid [CH3CO2H] (Baker) (1:1 
volume proportion) was prepared, in order to be used as doping source. A constant [Ag]/[Zn] ratio 
of 2 at. % was applied at the ZnO Ag film preparation.  The morphology of ZnO:Ag films has been 
studied using the scanning electron microscopy (SEM) Dual Beam, FEI brand, model Quanta 3D 
FEG with field emission gun. PL spectra were measured in the temperature range 10-300K at the 
excitation by a He-Cd laser with a wavelength of 325 nm and a beam power of 20 mW at 300K 
using a PL setup on a base of spectrometer SPEX500 described in [9-11]. 
 
3. Experimental results and discussion 

SEM images of the typical ZnO:Ag nanorods (NRs) obtained at the deposition times of 3 and 10 
min and the substrate temperatures 4000 C are presented in figure 1. It is clear that the ZnO 
nanoroads have the hexagonal cross section and the road orientation along the c axis. The cross 
section size of ZnO nanoroads increases with the duration of UPS process from 50-70 nm (for the 
duration of 3min), 100-150 nm (at 5min) and 150-200 nm (at 10 min). PL spectra of ZnO:Ag NRs 
are shown in figure 2 for all studied samples.  

 

(a) (b) 
 
Figure 1. SEM images of the samples prepared at the substrate temperatures 4000 C and the 
durations of 3 (a) and 10 (b) min. 
 

It is clear that the PL spectra are complex and can be represented as a superposition of elementary 
PL bands with the peaks in the spectral ranges: 2.90-3.25 eV (I, II), 2.00-2.50 eV (III, IV) and 1.45-
1.61 eV (V,VI). The deconvolution procedure has been applied to the PL spectra with the aim to 
separate the elementary PL bands (Fig.3). The analysis of figures 3 permits to distinguish six 
elementary PL bands with the peaks at:  3.25 (1), 2.92 (2), 2.75 (3), 2.10 (4), 1.62 (5) and 1.46 (6) 
eV at 10K (Fig.3). 
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Figure 2. PL spectra of samples prepared on 

the substrate with T = 400° C at the deposition 
times: 1-3 min, 2-5 min, 3-10 min. 

Figure 3. PL spectrum deconvolution on 
six elementary PL bands for the film obtained 
at 4000 C at the duration  3  min. 

 
 
It well known that the UV-visible PL bands (I) in ZnO are near-band-edge (NBE) or exciton 
emissions [12]. The PL band in the spectral range 2.00-2.50 eV related to the defect emission [12] 
and the nature of IR PL bands has to be clarified. With increasing the USP duration the intensity of 
defect (II) related PL bands rose mainly in comparison with the intensity of NBE PL bands (Fig.2). 

 PL spectra of ZnO:Ag NRs measured at different temperature in the range of 10-300K are 
shown in Fig.4. The same rates of the variation of PL peak intensities versus temperature have been 
revealed for the PL bands 1 and 7, as well as for the emission bands 2 and 8 (Fig.4).  This fact, as 
well as the PL peak positions, permits to assign the IR PL bands 7 and 8 to the second order 
diffraction of the NBE PL bands 1 and 2, respectively [13]. 

 A great variety of luminescence bands in the UV and visible spectral ranges have been 
detected in ZnO crystals [12]. The near-band-edge (NBE) emission at 3.0-3.37 eV is attributed to 
the free (FE) or bound (BE) excitons, their LO phonon replicas, such as FE-1LO or FE-2LO, to 
optical transition between the free to bound states, such as the shallow donor and valence band, or 
to donor-acceptor pairs [14].  However, the position of the near-band-edge emission at room 
temperature can vary significantly due to the variation of relative contributions of free exciton 
emission and phonon replicas [15]. 

 The defect related green PL band in the spectral range 2.40-2.70 eV in ZnO is assigned 
ordinary to oxygen vacancies [16], Cu impurities [17] or surface defects [18]. The orange PL band 
with the peak at 2.02-2.10 eV was attributed earlier to oxygen interstitial atoms (2.02 eV) [19] or to 
the hydroxyl group (2.10eV) [20, 21]. Taking into account that the PL intensity of this PL band 
increased with raising the USP duration (Fig.2) the assumption that the corresponding defects are 
related to oxygen interstitial atoms (or to the hydroxyl group) looks very reliable.  

 Finally, we need to discuss the nature of the near-band-edge PL bands at 2.92 and 3.25 eV. 
Studied ZnO films were doped by Ag and, therefore, have the acceptor type defects, AgZn, which 
were formed when the Ag atoms substitute Zn atoms in the ZnO crystal lattice. The intensity of 
2.92 eV PL band decreases essentially with temperature and this PL band and its IR second-order 
diffraction peak (1.46eV) disappeared completely at 200K (Fig.4).  
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Figure 4. PL spectrum variation with temperature for the simple prepared at the duration 5 min. 
 

Thus it is possible to assume that this PL band (2.92 eV) owes to emission of the acceptor bound 
excitons (ABE), involving the acceptor AgZn, or its complexes such as donor-acceptor pairs, in the 
ZnO:Ag nanorods. The thermal decay of the 2.92 eV PL intensity is assigned to the thermal 
dissociation of ABE to free exciton. In this case the 3.25 eV PL band, which dominates in the room 
temperature PL spectrum (Fig.4) can be attributed to the LO phonon replica of  FE emission. 
 
4. Conclusions 
ZnO:Ag nanorods with hexagonal structures have been successfully synthesized by the USP 
method. The PL spectra of the ZnO:Ag NRs over the temperature range from 10 K to 300 K have 
been investigated. Temperature-dependent PL spectra show that the IR emissions correspond to the 
second-order diffraction of the NBE emissions. The study of NBE PL temperature dependences 
reveals that ABE and its second-order diffraction peak disappeared when the temperature higher 
than 200 K. The attenuation of the ABE peak intensity is ascribed to the thermal dissociation of 
ABE to free exciton. The PL bands, related to the LO phonon replica of free exciton and its second-
order diffraction, dominate in the PL spectra at room temperature that testifies on the high quality of 
the ZnO:Ag films prepared by USP. 
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