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Abstract. The dipole response in neutron rich nuclei is investigated within self-consistent
approaches which make direct use of a nucleon-nucleon optimized chiral potential complemented
with a density dependent term simulating a three-body force. Hartree-Fock-Bogoliubov plus
Tamm-Dancoff and random-phase approximations show that such a potential improves the
description of the dipole modes with respect to other realistic interactions. The inclusion of the
two-phonon states within an equation of motion method induces a pronounced fragmentation
of both giant and pygmy resonances in agreement with recent experiments.

1. Introduction

Collective modes, and, more specifically, giant (GDR) and pygmy (PDR) dipole resonances in
neutron rich nuclei are mostly investigated in phenomenological mean field approaches embedded
within energy density functionals derived from Skyrme forces [1] or from relativistic meson-
nucleon Lagrangians [2].

More recently, we have followed an alternative route proposed in [3], which consists in carrying
out self-consistent calculations using directly realistic potentials derived from nucleon-nucleon
(NN) forces, and adopted a Vlowk potential derived from the CD-Bonn NN interaction. Using
such a potential, we have generated a Hartree-Fock-Bogoliubov (HFB) basis and, then, adopted
both (quasi-particle) Tamm-Dancoff ((Q)TDA) and random-phase approximation ((Q)RPA)
approaches to carry out a systematic study of the dipole response in several chains of neutron rich
isotopes [4]. As in [3], however, we found necessary to add a corrective density dependent piece
in order to get single-particle spectra sufficiently compressed so as to reproduce the main peak
of the experimental GDR. Using such a modified Hamiltonian, we obtained spectra qualitatively
consistent with experiments for all light, medium mass and heavy isotopes [4].

We have now performed analogous self-consistent (Q)TDA and (Q)RPA studies by making
direct use of a recently determined chiral potential, dubbed NNLOopt, with its parameters
optimized so as to minimize the effects of the three-body forces [5]. This potential was adopted
for 132Sn in [6] and found to yield a much more compact single particle spectrum compared
to Vlowk and, consequently, to produce a dipole strength distribution much closer to the region
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of observation of the GDR peak. It was, nonetheless, still necessary to add the same density
dependent term, though with a weaker coupling constant, in order to reproduce the centroid of
the resonance. The potential, so modified, reproduces satisfactorily the gross features of both
GDR and PDR. This is illustrated here for a chain of Ca isotopes.

(Q)TDA and (Q)RPA, however, were unable to describe the fine structure of the two
resonances. So, we went beyond the mean field approximation and adopted the equation of
motion phonon method (EMPM) [7–9] to study the dipole response within a space spanned by
one plus two-phonon basis states [6]. The two phonons enhanced enormously the fragmentation
of the dipole strength in both GDR a PDR regions, in better agreement with experiments. We
report here also on the findings of such an investigation.

2. Brief outline of the EMPM method

The primary goal of the EMPM method is to generate a basis of n-phonon states |n;β > of
energies Eβ having the form

|n;β >=
∑

λα

C
β
λα

{

O
†
λ× | n− 1, α >

}β
, (1)

where the TDA particle-hole (p-h) phonon operator

O
†
λ =

∑

ph

cλph(a
†
p × bh)

λ (2)

of energy Eλ acts on the (n− 1)-phonon states | n− 1, α > of energies Eα. The procedure starts
with the equations of motion

< n, β ‖ [H,O
†
λ] ‖ n− 1, α >=

(

Eβ − Eα

)

< n, β ‖ O
†
λ ‖ n− 1, α > . (3)

We, then, expand the commutator and invert equation (2) in order to express the p-h operators,

present in the expanded commutator, in terms of the phonon operators O
†
λ. The outcome of

this action is [9] the generalized eigenvalue equation

∑

λ′α′λ1α1

[

Aβ(λα, λ1α1)− Eβδλ1λδα1α

]

Dβ(λ1α1, λ
′α′)Cβ

λ′α′ = 0. (4)

Here

Dβ(λ1α1;λ
′α′) =

[

< n− 1, α1 | ×Oλ1

]

β

[

O
†
λ′× | n− 1, α′ >

]

β
(5)

is the metric matrix and Aβ is a matrix of the simple structure

Aβ(λα, λ′γ) = (Eλ + Eα)δλλ′δαγ +
∑

σ

W (βλ′ασ; γλ)Vσ
λα,λ′γ , (6)

where W is a Racah coefficient and Vσ a phonon-phonon potential given by

Vσ
λα,λ′γ =

∑

rstq

ρλλ′([q × t]σ)F σ
qtrsρ

(n)
αγ ([r × s]σ). (7)

We have denoted by ρλλ′ and ρ
(n)
αα′ , respectively, the n = 1 (TDA) and the n-phonon (n > 1)

density matrices

ρλλ′([r × s]σ) =< λ′ ‖
[

a†r × bs

]σ
‖ λ > (8)

ρ
(n)
αα′([r × s]σ) = 〈n;α′ ‖

[

a†r × bs

]σ
‖ n;α〉. (9)
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The formal analogy between the structure of the phonon matrix Aβ(λα, λ′α′) and the form of
the TDA matrix Aλ(ph; p′h′) was pointed out [9]. The first is deduced from the second by
replacing the TDA p-h energies with the sum of phonon energies (Eλ + Eα) and the TDA p-h
interaction with the phonon-phonon interaction Vσ.

Equation (4) represents the eigenvalue equation in the overcomplete basis
{

O
†
λ× | n−1, α〉

}β
.

The redundant states are eliminated by the procedure outlined in [7, 8], based on the Cholesky
decomposition method.

Since recursive formulas hold for all quantities entering A and D, the eigenvalue equations
are solved iteratively starting from the TDA phonons and, thereby, yield a set of orthonormal
multiphonon states {|0 >, |1, λ >, . . . |n, α > . . .}.

In such a basis, the Hamiltonian matrix is composed of a sequence of diagonal blocks, one
for each n, mutually coupled by off-diagonal terms 〈n′ | H | n〉 which are non vanishing only for
n′ = n± 1, n± 2 and are computed by means of recursive formulas. A matrix of such a simple
structure can be easily diagonalized yielding eigenfunctions of the form

| Ψν〉 =
∑

nα

C(ν)
α | n;α〉. (10)

3. Calculations and results

We adopted an intrinsic Hamiltonian obtained by subtracting the center of mass kinetic energy
from the shell model kinetic operator and used the two-body potential

V2 = NNLOopt + Vρ. (11)

where NNLOopt is the NN chiral potential optimized so as to minimize the effects of the
three-nucleon force [5], while Vρ is a corrective repulsive, density dependent, two-body potential
simulating a three-body contact force [10] which improves the description of bulk properties in
closed shell nuclei [11] and yields more realistic single particle spectra and multipole nuclear
responses [3, 4].

V2 is adopted to generate a HFB basis in a configuration space which includes 13 harmonic
oscillator major shells, up to the principal quantum number Nmax = 12. Such a space is sufficient
for reaching a good convergence. The self-consistent basis is used to compute the dipole strength
distribution. We performed such a calculation in both (Q)TDA and (Q)RPA and found that
the two approaches yield almost identical dipole spectra in all chains of isotopes [4, 6].

As illustrated in [6], the NNLOopt yields proton and neutron single particle spectra
considerably more compressed than the ones produced by Vlowk derived from the CD-Bonn
potential [4]. This compression is more consistent with experiments and improves the (Q)TDA
and (Q)RPA descriptions of the dipole response. In 132Sn, indeed, the peak of the strength
distribution gets shifted from ∼45 MeV, obtained when Vlowk is used, to ∼23 MeV.

Such a strong shift, however, is not sufficient to reach the strongest experimental peak,
observed at ∼16 MeV. Hence the need of adding Vρ, though with a weaker coupling constant.
Such a potential pushes the dipole strength distribution in the region of observation as shown
in figure 1 for a chain of Ca isotopes. Analogous results are obtained for O and Sn isotopes.
(Q)RPA and (Q)TDA cross sections, computed by using a width ∆ = 2.0 MeV, follow closely
the measured GDR cross sections. Such a good agreement is illustrated in the plots of figure 2
for 40Ca and 48Ca and holds for all the other nuclei.

Figure 1 shows that a peak appears around 10 MeV and becomes more and more pronounced
as the excess neutrons increase. This trend, consistent with experiments, points toward the
pygmy nature of these transitions, a suggestion supported by the analysis of the transition
densities.
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Figure 1. (Q)RPA E1-strength distribution in a chain of Ca isotopes obtained using
NNLOopt + Vρ.

Both (Q)TDA and (Q)RPA describe properly the gross features of GDR and PDR. To
reproduce their fine structure it is necessary to go beyond the mean field approximation. This
was done for 132Sn by using the EMPM [6].

In the EMPM, the 1− states are obtained by diagonalizing the Hamiltonian in a space
spanned by one- (| λ, 1−〉) plus two-phonon (| (n = 2)β, 1−〉) basis states. The latter states

are generated in a subspace which includes the states | (λ1 × λ2)
1−〉 ≡

{

O
†
λ1
× | λ2 >

}1−

of

energies Eλ1
+ Eλ2

≤ 30 MeV,
The inclusion of the two-phonon states has a strong damping effect on the response. As shown

in figure 3, compared to TDA, the EMPM cross section is severely quenched and reshaped due
to the one- to two-phonon coupling. It has a smoother behavior and follows more closely the
experimental points [12].

Both TDA and EMPM calculations yield a small peak in the cross section around ∼ 10 MeV,
fairly close in position and height to the one at ∼ 9.8 MeV observed experimentally [12]. The
EMPM strength collected by the low-lying states up to ∼ 11 MeV exhausts ∼ 5.8% of the TRK
sum rule. This value is within the error of the measured fraction 4(3)% [12].

The phonon coupling enhances greatly the fragmentation of the strength. This effect, partly
hidden in the cross section due to the smoothing action of the Lorentzian, is clearly visible in
the E1 spectra shown in [6]. As compared to TDA, the EMPM spectrum is much more dense
and is composed of peaks of considerably shorter height in both GDR and PDR regions.

The low-lying spectrum is composed of a large number of levels excited by both isoscalar and
isovector probes (figure 4), in analogy with the experimental spectrum produced by (γ, γ′) and
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Figure 2. TDA and RPA versus experimental [17] cross sections in 40Ca and 48Ca

(α, α′γ) experiments in the open shell 124Sn [13–15]. Our calculation, however, does not predict
for 132Sn a splitting between isoscalar and isovector dipole modes at low-energy, at variance with
the conclusions drawn from the analysis of the observed spectra in 124Sn [16].

The mechanism of excitation suggests the pygmy nature of the low-lying states, a suggestion
supported by the analysis of the wavefunctions and the transition densities [6].
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Figure 3. EMPM and TDA versus
experimental cross sections in 132Sn. A
Lorentzian width ∆ = 0.5 MeV was used to
compute the cross sections.
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Figure 4. Low-lying isoscalar and isovector
dipole transition strengths in 132 Sn
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4. Conclusions

The first conclusion to be drawn from the above analysis is that the direct use of the optimized
chiral potential NNLOopt yields much more realistic HF spectra compared to other realistic
potentials and improves drastically the description of the dipole response. Such a potential,
however, is not able to fill completely the gap between theory and experiments. This gap was
filled here by adding a phenomenological density dependent repulsive term.

Another aspect to be pointed out is the high sensitivity of the response to the NN interaction.
This property may be exploited to test different NN forces and to suggest a way of improving
their parametrization.

Last but not least, the present study has pointed out the crucial role of complex
configurations, two-phonon states in our case, in damping the GDR and in enhancing the density
of low-lying levels as recent experiments require.
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