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Abstract. The natural log of experimental nuclear level densities at low energy is linear with 
energy. This can be interpreted in terms of a nearly 1st order phase transition from a superfluid 
to an ideal gas of quasi particles. The transition temperature coincides with the BCS critical 
temperature and yields gap parameters in good agreement with the values extracted from even-
odd mass differences from rotational states. This converging evidence supports the relevance 
of the BCS theory to atomic nuclei. 

1.  Introduction 
For conventional superconductors, the standard Bardeen-Cooper-Schrieffer (BCS) theory [1] predicts 
a critical temperature/angular momentum at which the superconducting phase reverts to the normal 
one through a second order phase transition. However, for atomic nuclei, this second-order phase 
transition has never been truly verified experimentally, in spite of long and intense efforts. On the 
other hand, first-order phase transitions can also arise from the BCS Hamiltonian, as demonstrated in 
reference. [2]. In the present paper, we show that a first-order, rather than a second-order, phase 
transition is dramatically evident in experimental nuclear level densities below neutron threshold, and 
that this first-order transition is indisputably related to the presence of an energy gap in the 
quasiparticle spectrum. A large body of high-quality nuclear level-density data exemplified in figure 1. 
are now available in the literature [3–5]. The stunning, common feature of the level densities, 
particularly evident for deformed, mid shell nuclei, is the linear dependence of their logarithm with 
excitation energy. Above ≈ 2∆, where ∆ is the pair-gap parameter, and up to about the neutron 
separation energy, they are well described by the constant temperature expression proposed by Gilbert 
and Cameron [6]: 

𝜌 𝐸 ≈ exp !
!
                              (1)        

where E is the excitation energy and T is the constant nuclear temperature. They found this expression 
to be in good agreement with the cumulative number of levels at low excitation energy, but did not 
provide any fundamental, quantitative explanation for this relation. 

2.  The Phase Transition 
This experimental linear dependence of the entropy 𝑆(𝐸) ≈ ln 𝜌(𝐸) as given by equation (1) and 
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shown in figure 1 is the micro-canonical hallmark of first-order phase transitions. Surprisingly, we 
may have been staring at the biggest signal yet of such a transition without seeing it. This transition is, 
at least for nuclei well away from closed shells, clearly related to pairing. If we, provisionally, take the 
constant temperature of the experimental level density spectrum to be the BCS critical temperature, 
then, according to the well-known BCS relation  

                                                               𝑇!" =
!!!
!.!"

                          (2) 

we can extract the gap parameter ∆0 and compare it directly with that obtained from even-odd mass 
differences represented in the liquid-drop term as described e.g. by Bohr and Mottelson [7], and 
viceversa: 

Δ!" ≈ 12𝐴!!/!.          (3) 

For a wide range of mass number A, the resulting relationship between mass number and temperature 
using equation (2) is shown in figure. 2, where the experimental constant temperatures TCT are taken 
from references. [8–10]. The close agreement in magnitude and trend is remarkable for A > 100 and 
away from closed shells, although the assimilation of the constant level density temperature 
characteristic of a first-order transition to a critical temperature associated with a second-order 
transition remains to be explained. As a consequence of this observation, given the even-odd mass 
difference, we can predict the low-energy nuclear level densities throughout the nuclear chart for 
regions away from magic proton/neutron numbers. Before we embark on the explanation of this 
remarkable feature, let us consider another striking experimental observation: the level densities of 
neighbouring even-even and odd-A nuclei have nearly identical slopes, as seen in figure 1 showing 
data from the rare-earth region [11-15], and several actinides [16-17]. Therefore, the level densities of 
neighbouring isotopes can be made to overlap by means of a horizontal shift along the excitation-
energy axis reference [18]. 

Figure 1. (Color online) Experimental level densities for rare-earth and actinide nuclei measured at 
the Oslo Cyclotron Laboratory (OCL), with a fit of the constant-temperature model (blue line) for 
excitation energies above ≈ 2 MeV. 
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Figure 2. (Color online) 
Relation between mass 
number A and constant 
temperature TCT taken 
from references [8- 10] 
for A = 40-250, 
compared to Tcr from 
equation (3) utilizing 
equation (2) (dark 
purple line). 

 

The resulting shift is, not surprisingly, in very good agreement with the even-odd mass difference; see 
table 1. As a consequence, locally, for any given pair of even-even and odd-A nuclei, we can calculate 
the common slope of the two level densities directly from the observed excitation-energy shift. 
Equally intriguing is the vertical shift between the even-even-odd-A nuclear level densities, bringing 
the lower even-even level density on top of the higher odd-A one (see figure 1). This difference in 
entropy, approximately constant throughout the energy range [2∆; Sn-1 MeV], can be interpreted as the 
entropy carried by the extra quasiparticle. The experimental evidence thus suggests that as the system 
is excited; quasiparticles are created with a constant energy cost and carrying a constant amount of 
entropy, see table 1. This is a clear signature of a first-order phase transition, from a superfluid phase 
to an ideal gas of quasiparticles. 

 

 

 

 

Table 1. Extracted temperatures TCT from 
fitting the CT-model expression to the 
level-density data of rare-earth and actinide 
nuclei, and the corresponding pair-gap 
parameters ∆CT calculated from equation 
(2). These are compared to the global 
formula for ∆BM [equation (3)], for which 
the temperature is deduced using equation 
(2). Also, the even-odd experimental shift, 
∆eo is given, and the corresponding 
temperature Teo is estimated from this shift 
for the odd nucleus. The experimental 
entropy excess ∆S is also given. 
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3.  Level Density with Pairing 
The presence of pairing in nuclei away from closed shells dominates the low energy level density and 
its energy dependence. For the uniform model in the case of an even-even nucleus, the ground state is 
shifted downward by an amount 𝐸!"#$. =

!
!
𝑔Δ!! , where Δ0 is the ground state gap parameter and g is 

the doubly degenerate single particle level density, which is related to the single particle level density 
parameter a according to 𝑎 = !!

!
𝑔. As the temperature increases, quasi particle excitations are 

produced until their blocking effect leads to a decrease and eventual breakdown of the pairing 
correlation at the critical temperature 𝑇!" =

!!!
!.!"

.  
   At this temperature the nucleus reverts to a non-interacting Fermi gas with its ground state shifted by 
an amount equal to the condensation energy. ��� Therefore, at Tcr the excitation energy is 
 

𝐸!" =
1
2
𝑔Δ!! +

𝜋!

3
𝑔𝑇!"! =

1
2
𝑔Δ!!    1 +

8
3
  

𝜋!

(3.53)!
   .            (4) 

We can also evaluate the mean number of quasi particles Qcr at the critical point [2] 

𝑄!" = 4𝑔𝑇!"   ln 2. 

We can now calculate the mean energy cost per quasi particle: 

𝐸!"
𝑄!"

≅
3.53𝜋
16 ln 2

Δ! = Δ!.                               5  

   This result is remarkable: it indicates that, if we consider the excitation energy as the independent 
variable, the energy cost per quasi particle is constant as expected for 1st order transition. This is in 
contrast with what one observes when the temperature is used as the independent variable, when a 
distinct 2nd order phase transition is visible. In the same spirit, we note that the heat capacity increases 
nearly exponentially with temperature up to Tcr. This means that most of the energy is absorbed near 
Tcr. ���From the constant energy cost ∆ per quasiparticle, it follows that the entropy per quasiparticle is 

𝛿𝑆
𝛿𝑄

=
Δ!
𝑇!"

=
3.53
2

= 1.77                                (6) 

to be compared with the empirical, vertical shift as discussed above (see table 1). To summarize, if we 
use the energy rather than the temperature as the independent variable, we observe the progressive 
creation of quasiparticles, in number proportional to the energy, like the amount of ice melted is 
proportional to the absorbed heat, independent of the amount of previously melted ice. This 
independence, together with the constant entropy per quasiparticle, gives clear evidence of a first- 
order phase transition. 
   We can also calculate the entropy at the critical point: 𝑆!" =   2 !

!

!
𝑔  𝑇!" and the overall entropy per 

quasi particle: 
𝑆!"
𝑄!"

=
𝜋!

6 ln 2
= 2.374.                            (7) 

Correcting for the BCS discontinuity in the specific heat of a factor 2.43 

𝑆!"!

𝑄!"
= 2.374   −

1
2
ln 2.43 = 1.92                              (8) 

Alternatively  
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𝑆!"!

𝑄!"
=
𝐸/𝑄
𝑇!"

=
3.54Δ
2Δ

= 1.77                                  (9) 

in excellent  agreement. 
The number of the states associated with each quasi particle is then approximately constant and given 

by 𝑁 = 𝑒
!!

! = 6.8. 
Given that this transition is “nearly” 1st order, we infer that the level density should be “nearly” 
exponential: 𝜌(𝐸) ≈ exp !

!
  where T should be “about” Tcr. 

4.  Even-Odd effects in level densities  
In the pairing picture, an odd nucleus possesses one quasi particle in its ground state, which should 
control the level density at low energy. Otherwise, the odd-A nucleus should look like an even-even 
one except for an energy shift which should correspond to the even-odd mass difference ∆. A simple 
check for this is to verify that the level densities of two adjacent nuclei overlap if a horizontal shift ∆ is 
applied to the odd nucleus. According to the considerations made above, this shift ∆ can be related to 
the level density slope by the expression 𝑇!"# ≅ 𝑇!" =

!!
!.!"

. 
The next check can be made by overlapping the two level densities by means of a vertical shift. This 
vertical shift ∆S should be compared with the entropy per quasi particle  !

!

!
≅ 1.77. 

These checks are done in table 1 where a substantial consistency is observed. However, somewhat 
unexpectedly, the linearity of lnρ with E is also observed at low energy near the magic regions, so for 
these regions the cause of the linear behaviour must be looked for elsewhere. 

5.  Spectra with any gap  
As discussed above, the origin of the linear dependence is due to the constant energy cost for the 
production of a quasi particle and a constant entropy per quasi particle. A similar situation occurs for a 
magic system with a gap in the single particle spectrum. Here, the cost to promote a nucleon and thus 
create a quasi particle ( particle, hole excitation) is constant, at least for a while. This can be illustrated 
with a simple model. 
   Let excitations (quasi particles) be created into a state of degeneracy N at the cost δ per 
excitation.The excitation energy is: E = nδ and the associated number of states Ω is Ω ≅ 𝑁! for n<<N. 
It follows that 𝑆 = 𝑛 ln𝑁 = !

!
ln𝑁 = !

!
  where 𝑇 = !

!"!
    and 𝜌 𝐸 = exp !

!
. 

Thus an exponential spectrum is expected if a gap is present irrespective of its origin. 

6.  Consistency between “Pairing gap” and “any gap" 
The entropy per quasi particle in the pairing model is: !!"

!!"
= !

!!"
= 1.77 

For the “any gap” model we have: !"
!"
= ln𝑁 

Let us put pairing ∆ into δ and equate T with Tcr : 𝑇 =
!
!"!

= !!
!.!"

 
From this we obtain: ln N =1.77 in exact agreement with equation (6), and in good agreement with the 
average, experimental values from table 1 giving ∆Save = 2.0(1) Further, the number of available states 
per quasiparticle is exp(∆S) = exp(1.77) ≈ 6, again agreeing well with the experimental ∆S values in 
table 1, exp(∆Save) = 8(1). 

7.  Conclusion  
In conclusion, we have shown that the low-energy level densities (below the neutron separation 
energy) portray a strong signature of a first-order phase transition, completely consistent with the BCS 
framework. The coexistence of a superfluid with a vapor of quasiparticles is easily characterized 
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thermodynamically, especially through the comparison of even-even and odd-A nuclei. In particular, it 
is shown that the even-odd mass difference is sufficient to determine the level density in absolute 
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