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Abstract. The role of discrete symmetries in nuclear physics is briefly reviewed within the
context of the algebraic cluster model (ACM). The symmetries D3 (triangle) for 3α and Td

(tetrahedron) for 4α are discussed and evidence shown for their occurrence in 12C (D3) and
16O

(Td).

1. Continuous symmetries
Continuous symmetries were introduced in nuclear physics as early as the 1930’s. In 1932
Heisenberg introduced isospin, SUT (2), in 1937 Wigner combined isospin with spin to SU(4) ⊃
SUT (2)⊗ SUS(2), in the 1940’s Racah developed the group theory of the shell model in �s and
jj coupling, U ((2�+ 1) (2s+ 1)) and U(2j+1), and in 1958 Elliott introduced the symmetry of
mixed configurations, in particular the symmetry of the sd and pf shells. The use of continuous
symmetries culminated in 1974 with the introduction of the interacting boson model, Arima-
Iachello U(6). The role of these symmetries in nuclear physics is well documented and will not
be discussed here.

2. Discrete symmetries
Discrete symmetries were also introduced in the early days of nuclear physics, mostly within
the framework of the α-particle model, by Wheeler in 1937 [1] and Dennison in 1954 [2] and
later exploited by Brink [3], Robson [4] and others. We have recently readdressed this problem
within an algebraic description of clustering, the Algebraic Cluster Model (ACM), and in this
contribution some recent results will be reported.

The algebraic cluster model is a description of cluster states as representations of U(3k− 2),
where k is the number of constituents. The elements of the algebra are the bilinear products
of boson creation and annihilation operators which are a bosonic quantization of the Jacobi
variables and their associated momenta plus an additional s boson. For k = 2, there is
only one Jacobi vector, ρ = r1−r2, for k=3 there are two vectors, ρ = (r1−r2)/

√
2, λ =

(r1+r2−2r3)/
√
6, and for k=4 there are three vectors, ρ = (r1−r2)/

√
2, λ = (r1+r2−2r3)/

√
6,

η = (r1+r2 + r3 − 3r4)/
√
12, where ri are the coordinates of the constituent particles. For two-

body clusters, ACM was introduced years ago for applications to molecules [5] and nuclear
molecules [6]. For three-body clusters ACM was introduced in [7], and discussed in [8], and
for four-body clusters was introduced in [9], [10] and discussed, very recently, in [11], [12]. The
discrete symmetries of the α-particle model discussed in those articles and here are shown in
Table 1.
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k Nucleus U(3k − 2) Discrete symmetry Jacobi variables
2 8Be U(4) Z2 ρ
3 12C U(7) D3 ρ,λ
4 16O U(10) Td ρ,λ,η

Table 1. Discrete symmetries of the α-particle model considered in this article.

Figure 1. States of 3α with D3 symmetry.

Within the algebraic cluster model (ACM) it is possible to derive many analytical results. In
particular, for a rigid roto-vibrator one has explicit expressions for the energy levels in terms of
the angular momentum L and the vibrational quantum numbers vi(i = 1, 2...). These are:

2α(Z2) E(v, L) = E0 + ω
(
v + 1

2

)
+ κL(L+ 1)

3α(D3)
E(v1, v2, L) = E0 + ω1

(
v1 +

1
2

)
+ ω2 (v2 + 1)

+κL(L+ 1)

4α(Td)
E(v1, v2, v3, L) = E0 + ω1

(
v1 +

1
2

)
+ ω2 (v2 + 1)

+ω3

(
v3 +

3
2

)
+ κL(L+ 1)

. (1)

Spectra are characterized by the representations of the discrete group G and consist in a
set of rotation-vibration bands, with specific values of the angular momentum and parity.
Representations can be labeled either by G or by the isomorphic group Sn (the permutation
group). The conversion from G to Sn is: G = Z2 ∼ S2 ∼ P , A ≡ [2]; G = D3 ∼ S3, A ≡ [3],
E ≡ [21]; G = Td ∼ S4, A ≡ [4], F ≡ [31], E ≡ [22]. Fig.1 shows the expected rotation-vibration
spectra of states for 3α with D3 symmetry. For A representations, the rotational band has
LP = 0+, 2+, 3−, 4±, ..., while for E representations the rotational band has LP = 1−, 2∓, 3±, ....
Note the unusual angular momentum and parity content of the rotational bands. This content
is not the same as that of the rotational bands of a rotating ellipsoidal shape. [See, for example,
the SU(3) limit of the IBM].

In Fig.2, the expected spectrum of a 4α configuration with Td symmetry is shown. For
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Figure 2. States of a 4α configuration with Td symmetry.

A representations, the spectrum consists of a rotational band LP = 0+, 3−, 4+, 6±, ..., for E
representations LP = 2±, 4±, 5±, ..., and for F representations LP = 1−, 2+, 3±, ...

The breaking of representations of U(3k − 2) into those of Sn and thus the determination of
the angular momentum content of each band is one of the novel results of ACM.

The occurrence of D3 symmetry in 12C has been confirmed by a very recent experiment [13],
[14] and its evidence is shown in Figs. 3 and 4.

The occurrence of Td symmetry in 16O was discussed long ago by Robson [4], and it has been
emphasized recently in [11].The evidence is shown in Figs. 5 and 6.

In addition to energy spectra one can also derive within the ACM, analytic expressions
for other observables, most notably electromagnetic transition rates. For example, for 4α
configurations with Td symmetry, we have

B(EL; 0+ → LP ) =

(
ZeβL

4

)2
(2L+ 1)

4π

[
4 + 12PL

(
−1

3

)]
(2)

and the form factors in electron scattering are

FL

(
0+ → LP

)
= cLjL (qβ) (3)

with c20 = 1; c23 =
35
9 ; c

2
4 =

7
3 ; c

2
6 =

32
81 .

The occurrence of Td symetry in 16O is confirmed by the B(EL) values given in Table 2.

3. Conclusion
In conclusion, the role of discrete symmetry in cluster physics is that of providing benchmarks
for energy levels and other obeservables that can be used to analyze data. In particular, by
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Figure 3. The experimental spectrum of 12C(left) and its comparison with the theoretical
spectrum with D3 symmetry (right). The lowest non-cluster states are also shown. Reproduced
with permission from [13].
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Figure 4. Observed cluster rotational bands in 12C. Reproduced with permission from [13].
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Figure 5. The experimental spectrum of 16O showing evidence for Td symmetry. The lowest
non-cluster states are also shown.

Figure 6. Observed cluster rotational bands in 16O.
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B(EL;LP → 0+) Th Exp E(LP ) Th Exp
B(E3; 3− → 0+) 181 205±10 E(3−) 6132 6130
B(E4; 4+ → 0+) 338 378±133 E(4+) 10220 10356
B(E6; 6+ → 0+) 8245 E(6+) 21462 21052

Table 2. B(EL) values and energies in 16O compared with those expected from a Td symmetry.
B(EL) values in e2fm2L and E in keV. The theoretical energies in column 5 are calculated from
E(keV ) = 511 L(L + 1). The value of β in Eq.(2) is extracted from the elastic form factor
measured in electron scattering, β = 2.0fm.

providing analytic expression for rotation-vibration spectra as well as electromagnetic transition
rates and form factors. Strong evidence for the occurrence of D3 symmetry in 12C and of Td

symmetry in 16O has been presented. [There is evidence for Z2 symmetry in 8Be but this has
not been presented here].

The occurrence of D3 and Td symmetry is also confirmed by microscopic calculations in the
(i) molecular orbital method [15] and in (ii) lattice calculations [16].

Cluster states are instead very difficult to describe within the framework of the one-center
shell model, where one needs multiparticle-multihole configurations and a model space with
several �ω quanta of excitation.
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