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Abstract.   Some functions of the author´s Mathematica 9 package are presented. Links are 

given to the author´s interactive demonstrations. Mathematica supports 143 types of statistical 

distribution covering not only metrology but almost all statistical areas. The Supplement 1 to 

the ISO GUM mentions that analytical methods are ideal ones, but assume they are applicable 

only in simple cases, and recommends Monte Carlo method. In contrast, this paper presents 

Mathematica functions that can explore a multitude of methods in order to find analytical, 

numerical, or statistical results using (usually) one million random variates. 

 1. Introduction  
The GUM Guide [1] provides a well-known framework for assessment and evaluation of uncertainties 

based on the law of propagation of uncertainty. This guide has generated the appearance of a great 

number of computer systems and calculators dedicated in helping estimate the uncertainty of 

measurements. Typing the key "uncertainty calculator" in Google gives back about 2,460,000 results. 

Wikipedia alone describes 18 uncertainty propagation software systems [2].  

The authors of the present work have previously devised an uncertainty calculus based on the GUM in 

Mathematica 6 [3]. An object x±x called uncertainty number was defined. After assuming x/x<<1 

the terms x were neglected in relational operations (<, =, >). Our Mathematica rules transform one 

expression of independent uncertainty numbers into single uncertainty number. Later on we were able 

to extend these rules to cover also fully dependent uncertainty numbers. Special cases of the rules we 

used in the interactive demonstrations [4, 5, 6, and 7].  

The GUM approach [1] is only exact for linear models, since it is based on the first order Taylor 

expansion, neglecting higher order terms. Thus direct application of the GUM rules in nonlinear 

models can potentially give quite misleading results. In order to account for non-linear scenarios, 

GUM allows for techniques other than the law of propagation of uncertainty (ref. [1], section G.1.5). 

The Supplement 1 to the GUM [8] recommends propagation of distributions, which can be applied in 

non-linear problems. In this Supplement, it is mentioned that analytical methods are ideal, but only 

viable in simple cases. Because of this, the Supplement recommends the Monte-Carlo method.  

In this paper we continue our previous work [3] by presenting a new Mathematica functions able to 

compute symbolically or numerically the propagation of statistical distributions, thereby extending our 

uncertainty calculus into the non-linear domain, at the same time avoiding the limitations present in 

the GUM approach. Interactive examples using this newly developed package are available on-line in 

Computable Document Format (CDF) files [9]. There users can interactively compare the exact 

uncertainties versus GUM uncertainties for Sin and Cos function [10]. The free Mathematica Player 

[11] is needed to evaluate the interactive tools [3, 4, 5, 6, 7, 9, 10]. 

Mathematica support 143 statistical distributions covered different research areas such as Actuarial 
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Science, Finance, Metrology, Risk, Reliability etc. From these distributions, there are many ways to 

define new, user-derived distributions that behave just like any other built-in distribution. Recently, 

the authors have published a quick, interactive reference guide to the logical relationships obeyed by 

the statistical parameters of the built-in Mathematica distributions [12], and the percentile plots of 78 

continuous statistical distributions [13].  

All functions, input and output lines bellow are written in the standard for Mathematica Currier font. 

2. Objectives 
This paper aims is the comparison of results obtained by original Mathematica functions based on 

propagation of uncertainty and propagation of distributions. 

Mathematica use NormalDistribution[,] for the Gaussian distribution with mean  and 

standard deviation . Since almost all Mathematica built-in objects are full English names beginning 

with capital letters, we follow this convention for our package functions as well. The functions 

demonstrated are: UncertainCalculus, GUM, CoverageInterval, and Measurand.  

3. UncertainCalculus 
The first version of uncertain calculus is demonstrated at ENCIT 2008 [3]. The function 

UncertainCalculus[case] evaluate input line with expression including uncertain numbers like ± 

(PlusMinus[,]). Similarly to GUM function case = 1 activate the rule for independent variables 

and case = 3 activate a rule for fully correlated variables. The case = 0 deactivate UncertainCalculus.  

The UncertainCalculus[1] activate the rule for independent variables. 

Then the following input line gives the corresponding output lines. 
c1 (1 ± 1) + c2 (2 ± 2)                  

                                                                                      Eqs 1 

In case of detectable error, like UncertainCalculus[2] the warning message appears. 

The UncertainCalculus[3] activate the rule for fully correlated variables. 

Then the following input line gives the corresponding output lines. 
c1 (1 ± 1) + c2 (2 ± 2)              

(c1 1+c2 2)±(c1 1+c2 2)                                                                                       Eqs 2 

For one variable independent and fully correlated variables rules give the same results. 

Next examples evaluate two nonlinear functions  
( ± )^2  

2±2                                                                                                                            Eqs 3 
Sin[±]                                        

Sin[]± Cos[]                                                                                                          Eqs 4 

Finally, the UncertainCalculus[0] deactivate the uncertain calculus. 

4. GUM 

The function GUM implements the formulas given in [1]. 

GUM[expr,x==±,case] or GUM[expr,{x1==1±1,...,xn==n±n},case] 

gives first order series approximation for expectation ±standard deviation of expr.  

Mathematica use lhs==rhs to denote equation, while lhs=rhs to evaluate rhs and assign the 

result to lhs.  

case = 1 or IdentityMatrix[n] (independent variables). 

case = 2 nonlinear expr (more series terms included in case 1). 

case = 3 or n x n constant matrix with elements 1 (fully correlated variables). 

case = n x n symmetric matrix with main diagonal 1 and elements in the closed interval -1 to 1 .  
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GUM[c1 x1 + c2 x2, {x1 == 1 ± 1, x2 == 2 ± 2}, 1] 

                                                                                     Eqs 5 
GUM[c1 x1 + c2 x2, {x1 == 1 ± 1, x2 == 2 ± 2}, 3] 

(c1 1+c2 2)±(c1 1+c2 2)                                                                                       Eqs 6 
GUM[x^2, x ==  ± , 1]                                                    

2±2                                                                      Eqs 7 
GUM[Sin[x], x ==  ± , 1]                                      

Sin[] ±  Cos[]                                                Eqs 8 

The uncertain calculus (Eqs 1 to Eqs 4), and GUM  (Eqs 5 to Eqs 8) gives the same results. 

The uncertain calculus could not use the correlation matrix R, where 01. 

                                                                 Eqs 9 
GUM[c1 x1 + c2 x2, {x1 == 1 ± 1, x2 == 2 ± 2}, R]               

(c1 1+c2 2)±√(c1
2 1

2+2 c1 c2  1 2+1
2 2

2)                                                           Eqs 10 

The solution given by Eqs 5 and Eqs 6 are special cases of Eqs 10 for =0 and =1, 

respectivelly. 
For the non-linear measurand x^2 , Sin[x], and Cos[x] the results are 

GUM[x^2, x ==  ± , 2]                                               

                                                                                                               Eqs 11 

FullSimplify[GUM[Sin[x], x ==  ± , 2]]                      

                                                            Eqs 12 

FullSimplify[GUM[Cos[x], x ==  ± , 2]]  

                                  Eqs 13 

5. Uncertainty 

The Uncertainty function propagate distributions to find the exact results analytically, numerically, or 

statistically. 
Uncertainty[expr,case] in domain of symbols, rationals, or reals attempt to calculate the uncertainty 

(expectation ±sandard deviation) of expr. 

Uncertainty[expr,case,n] in domain of reals calculate uncertainty of expr by using n pseudoradom 

variates. 

The argument case specify statistical distributions of the variables as in the Mathematica function 

Expectation. 
Uncertainty[c1 x1 + c2 x2,                          

{x1  NormalDistribution[1, 1],  

x2  NormalDistribution[2, 2]}]                    

                                                                                                          Eqs 14 

MatrixForm[ = MultinormalCovarianceMatrix[{1, 2}]]        

                                                                                                                                                   Eqs 15  
PowerExpand[Simplify[Uncertainty[c1 x1 + c2 x2, 
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   {x1, x2}  MultinormalDistribution[{1, 2}, ]]]]      

(c1 1+c2 2)±(c1 1+c2 2)                                                                                      Eqs 16 
PowerExpand[Simplify[Uncertainty[c1 x1 + c2 x2, 

   {x1, x2}  MultinormalDistribution[{1, 2},  R]]]]         

(c1 1+c2 2)±√(c1
2
 1

2
+2 c1 c2  1 2+c2

2
 2

2
)                                            Eqs 17 

Since the measurand is linear the GUM solutions Eqs 5, Eqs 6, and Eqs10 coincide with Eqs14, 

Eqs16, and Eqs17. 

For the non-linear measurand x^2 , Sin[x], and Cos[x] the results are 

Uncertainty[x^2, x  NormalDistribution[, ]] /.  
Sqrt[a_] Sqrt[b_] :> Sqrt[Expand[a b]]        

                                                                                        Eqs 18 

 
 The exact analitical solutions for Sin[x] and Cos[x] needs more time measured in second by the 

function Timing. 

Timing[Uncertainty[Sin[x], x  NormalDistribution[, ]] /. 
   Sqrt[x_] :> Sqrt[FullSimplify[ExpToTrig[x]]] /.  

  (x_ + Exp[y_]) :> Exp[y] (1 + Exp[-y] x)]            

                               Eqs 19 

Timing[Uncertainty[Cos[x], x  NormalDistribution[, ]] /. 
 Sqrt[x_] :> Sqrt[FullSimplify[ExpToTrig[x]]] /.  

  (x_ + Exp[y_]) :> Exp[y] (1 + Exp[-y] x)]  

                   Eqs 20 
The  exact results for x^2 , Sin[x], and Cos[x] obtained by Uncertainty function (Eqs 18, 

Eqs 19, and Eqs 20) correspond to ( Eqs 11, Eqs 12 and Eqs 13)   obtained by GUM function. 
Finally for a nonlinear measurand we generate 5 times 1 million random variates and extract the mean 

and standard deviation from the obtained data. The speed of computation is because Mathematica use 

a package array that permitted to do manipulations at once. 
Timing[TableForm[Table[Uncertainty[x1^2 + x2^3, 

    {x1  NormalDistribution[10, 0.1], 

     x2  NormalDistribution[5,0.2]}, 10^6], {5}]]]   
      225.627±15.2012 

      225.632±15.1982 

{2.059213,  225.579±15.1832},                               Eqs 21 

      225.598±15.1781 

      225.6±15.1789 

 

The exact numerical result is: 
Uncertainty[x1^2 + x2^3,  

{x1  NormalDistribution[10, 0.1],  
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x2  NormalDistribution[5, 0.2]}]                

225.61 ± 15.1803                                                Eqs 22 

6. CoverageInterval  

CoverageInterval[expr,case,q] evaluate CoverageInterval[expr,case,(1-
q)/2,(1+q)/2] 

CoverageInterval[expr,case,q,n] evaluate CoverageInterval[expr,case,(1-
q)/2,(1+q)/2,n] 

CoverageInterval[expr,case,{q1,q2}] attempt to calculate coverage interval from q1 to 

q2,  

where 0<q1<q2<1and q1+q2==1 

CoverageInterval[expr, case, {q1,q2}, n] calculate coverage interval from q1 to q2  

by using n pseudoradom variates. 

The argument case specifies statistical distributions of the variables as in the Mathematica function 

Expectation. 
The function ToInterval transform the uncertainty given by Eqs 17 as: 
ToInterval[Eqs17]                                           

Interval[{c1 1+c2 2-√(c1
2 1

2 +2 c1 c2  1 2+c2
2 2

2), 

c1 1+c2 2+√(c1
2 1

2 +2 c1 c2  1 2+c2
2 2

2)}],                        Eqs 23 
For the same problem the function CoverageInterval gives 
PowerExpand[Simplify[ 

  CoverageInterval[c1 x1 + c2 x2, 

   {x1, x2}  MultinormalDistribution[{1, 2},  R], q], 0 < q < 1]]       

Interval[{c1 1+c2 2-  c1
2 1

2 +2 c1 c2  1 2+c2
2 2

2) InverseErfc[1-q], 
 c1 1+c2 2-  √(c1

2 1
2 +2 c1 c2  1 2+c2

2 2
2) InverseErfc[1+q]}],   Eqs 24 

We like to find such a parameter q that transform Eqs 24 in  Eqs 23 
FullSimplify[Solve[Eqs23[[1, 2]] == Eqs24[[1, 2]], q]][[1, 1]] 
 qErf[1/√2] 
The obtained probability q is exact and could be computed numerically with any number of digits 
N[%, 12] 

q → 0.682689492137                                             Eqs 25  

The following example shows that exact numerical solution spends more time that random variate 

method with a million variate. 
Timing[CoverageInterval[ 

x^2, x  NormalDistribution[10, 0.1], 0.95]]              
{7.503648, Interval[{96.1185, 103.958}]}                        Eqs 26 
 Timing[CoverageInterval[ 

x^2, x  NormalDistribution[10, 0.1], 0.95, 10^6]]             
{1.357209, Interval[{96.1248, 103.972}]},                       Eqs 27 

7. Feasible Region  

In the domain of symbols, the function Uncertainty obtain exact solution for uncertainty of the 

measurand Exp[x^2], when x is normally distributed with mean , and standard deviation .  

The exact solution is [15]: 
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For the value used in [14] =0, and =1 the obtained solution becomes -± 1 3 , where = 1 . 

For this reason “Monte Carlo techniques is computationally problematic” [ 14 ]  
The full analysis of the exact solution is not object of the present notebook. In addition to the well-

known restriction >0, we take two more restrictions. Than we Reduce function finds the following 

feasible region: 
 Reduce[{>0,1-22>0,1-4 2>0},], 
0<<1/2,                                                         Eqs 27  
In the domain of Rationals, the function Uncertainty needs about 2 second to obtain 

uncertainty of Exp[x^2], when x is normally distributed with mean 1, and standard deviation 1/10. 

Timing[Uncertainty[Exp[x^2], x  NormalDistribution[1, 1/10]]] 

                                                   Eqs 28 

Since the result is also in the domain of Rationals it could be transformed in Reals with arbitrary 

number of digits. 

Next line show 20 digits: 
2.8024933887978839525 ± 0.58552102828175616088 
 

Timing[TableForm[ 

  Table[{Uncertainty[Exp[x^2], 

     x  NormalDistribution[1., .1], 10^6]}, {5}]]] 

  

           2.80168±0.58508 

           2.80251±0.58524 

{0.468750, 2.80227±0.585468}                                  Eqs 29 
           2.80199±0.586149  

           2.80262±0.585053 

 

For the values =0, and =1 used by Bruce Christianson and Maurice Cox the solution is complex 

number and Uncertainty function return the input line after 327 seconds. 
Finally we use different number of random variates to obtain completely non convergent results 
 

"random variates"   "uncertainty" 

____________________________________ 

1000    110.54±1880.48 

10000    417.604±12989.1                         Eqs 30 
100000    3182.44±431251 

1000000   183460.±1.24656×10
8
 

                          

For UnitSetep function the feasible regions of the results are built-in Mathematica. 

Uncertainty[UnitStep[x - a], x  UniformDistribution[{2, m}]] 
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1 a 2 && m 2
a m

2 m
a 2 && a m 0

0 True

2 a a2 2 m a m

2 m 2
a 2 && a m 0

0 True
     Eqs 31 
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