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Abstract. Detection of the end point in potentiometric titrations has wide application on 

experiments that demand very low measurement uncertainties mainly for certifying reference 

materials. Simulations of experimental coulometric titration data and consequential error 

analysis of the end-point values were conducted using a programming code. These simulations 

revealed that the Levenberg-Marquardt method is in general more accurate than the traditional 

second derivative technique used currently as end-point detection for potentiometric titrations. 

Performance of the methods will be compared and presented in this paper. 

1.  Introduction 

Titration is one of the most utilized techniques for measuring the amount of an analyte by considering 

the stoichiometry relationship in a chemical reaction. 

Potentiometric titration curve are represented by a plot of the indicator-electrode potential (y) 

versus the volume (or mass) of the titrant. For obtaining the end point of a titration, the first and 

second derivative plots of the potential as a function of the volume (or mass) of the titrant is normally 

used [1]. This method has no good accuracy due to its high susceptibility to measurement uncertainty 

of y and insensitivity to the number of data points around the end point. 

In this paper is proposed a non-linear regression of measurement data from potentiometric titrations 

by the Levenberg-Marquardt algorithm [2] for end point determination. This non-linear regression can 

be used to determine the end point with better accuracy. For example, in potentiometry a 0.25 mV 

error represents a 1% relative error in the concentration of the analyte [1]. This can be a huge problem 

for characterization of reference materials, since it has influence in the accuracy of the property value 

measured due to experimental errors. 

A code was developed in LabVIEW
 
(a proprietary development environment for programming) to 

determine the end point from acid-base coulometric titration with potentiometric detection. This paper 

aims to present the performance and comparison of the two methods, namely the traditional second 

derivative (SD) technique and the Levenberg-Marquardt (LM) approach. 
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2.  Implementation of the methods 

2.1.  Potentiometric titration data 

The coulometric titration data were obtained by using the primary system of coulometry from Inmetro 

[3]. The experimental data are related both to the initial and to the final acid-base coulometric titration. 

The end points were calculated through the software developed using both the SD method and the LM 

algorithm.  

2.2.  Second derivative method 

This method consists of the estimation of the end point by the second derivative that is obtained 

numerically. It was implemented in the software that reads the n experimental data points, time (ti), in 

seconds, and pH (yi), where i = 1, 2, ..., n. The n 2 points of the second derivative (yj") are used to 

estimate the value of the end point (te), that is computed considering that y"(te) = 0 and using a linear 

interpolation of tj and tj+1, where tj ≤ te ≤ tj+1 and y"(tj+1) ≤ y"(te) ≤ y"(tj). The respective value of pH, 

y(te), was calculated from the linear interpolation of y(ti) ≤ y(te) ≤ y(ti+1) and ti ≤ te ≤ ti+1 (figure 1). 

Unfortunately, in many cases this technique cannot provide a measurement result with low 

uncertainty because numerical derivatives are very prone to measurement noise (random error). 

Furthermore, this method requires two successive differentiations and uses only two points to estimate 

te from the second derivative data. Therefore a better approach to reduce the uncertainty of end-point 

estimations is reasonably expected. 

 

 

Figure 1. Experimental data and second derivative both linearly 

interpolated. 
 

2.3.  The Levenberg-Marquardt Method 

An empirical equation (1) presented at the first time by Vyskočyl and Mathiasová [4] was used in the 

LabVIEW  code to model the electrochemical reaction occurring in coulometric titrations when the 

detection of the end point is obtained by potentiometry. 
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Where: y is the electrode potential; t, time for the titration reaction (may be volume or mass); c, 

position of the titration curve; b, slope of the titration curve; q, position of the end point; k, width of 

the titration curve and a amplitude of the titration curve. 

An initial guess of the q value can be obtained from the maximum value of the first numerical 

derivative. It can be easily demonstrated, according to equation (2), that te = q is the end-point value. 

 

 (2) 

The program implemented reads the n experimental data points, time (ti) and pH (yi), where i = 1, 

2, ..., n, computes numerically the first derivative to specify the initial guess for the parameter q 

(maximum value) and uses the LM algorithm to determine the set of parameters that best fit the set of 

experimental data points. The best fit parameters minimize the weighted mean squared error between 

the observations yi and the best nonlinear fit. From the parameters a, c and q, the end point (te) and the 

respective value of pH (ye) are obtained from equations (3) and (4). 

 

 (3) 

 (4) 

The stopping conditions for the fitting process were set to 5 10
5
 for the maximum number of 

iterations of the fitting routine and the value of 10
10

 for the tolerance that specifies the relative change 

in the weighted distance between yi and the fit curve. The best fit curve and the experimental data are 

shown in figure 2. 

 

Figure 2. Experimental data and best fit curve using the Levenberg-

Marquardt algorithm. 
 

3.  Comparison of the methods 

3.1.  General procedure 
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The comparison between the SD technique with the LM method was carried out taking into account 

their performance. This comparison was undertaken through the evaluation of result deviations 

obtained from simulated data points ti and yi. 

It was considered that the equation (1) describes the electrochemical reaction and the measurement 

data yi can be mathematically modeled by equation (5). 

 

 (5) 

 

Where ei is the measurement error of yi and a normally distributed random variable with zero mean 

and standard deviation σe, where i = 1, 2, ..., n. 

When the σe and all parameters of the equation (5) are specified, the value of each yi can be 

computed (simulated data) and the true values of te and ye can be calculated from equations (3) and (4) 

for a given set of data points ti and yi generated. 

Accordingly, the generated values of ti and yi can be used by the SD and LM methods for 

estimation of te and ye and finally to compare with the true values of te and ye. The assessment of 

method accuracy for a specific data set ti , yi where i = 1, 2, ..., n , can be carried out computing the 

method errors e(teSD), e(yeSD), e(teLM) and e(yeLM) presented at the flow diagram in figure 3. 

 
 

In summary, a simulation of experimental data consisting of n points ti , yi , where i = 1, 2, ..., n , 

provides the errors of te and ye for both methods: e(teSD), e(yeSD), e(teLM) and e(yeLM). Consequently, if a 

large number of simulations are performed the probability distribution, mean and standard deviation of 

the errors can be computed for an error analysis. 

3.2.  Parameter specifications 

If a simulation for an error analysis is conducted using only a specific set of values of a, b, c, k, q, the 

conclusion of the analysis (the best method for end-point detection) will be very particular to the case 

tested. In order to achieve some generality, 1 10
5
 simulations were performed, where each simulation 

s has its own parameters as, bs, cs, ks, qs, tis (n is constant) and resultant errors es(teSD), es(yeSD), es(teLM), 

Figure 3. Flow diagram for 

calculation of the resultant 

errors of te and ye due to the 

errors ei. 
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es(yeLM). Moreover, to obtain representative values of as, bs, cs, ks, qs, tis and σe for all simulations (s = 

1, 2, ..., 1 10
5
) many data sets of titration experiments were used to determined their minimum and 

maximum values. This was computed through the LM method and was crucial to avoid unrealistic 

simulations. In each simulation, the parameters as, bs, cs, ks, qs were generated as random variables 

according to a uniform distribution with their respective minimum and maximum limits (table 1). 

 

Table 1. Parameter limits used for 

error analyses. 

Parameter Min value Max value 

a 0.76 0.99 

b 0.015 0.028 

c 6.4 6.5 

k -0.3 -0.21 

q 27 49 
 

3.3.  Error analyses 

Each error analysis consisted in 1 10
5
 simulations of n experimental data points to compute the errors 

es(teSD), es(yeSD), es(teLM) and es(yeLM) 1 10
5
 times and the corresponding means and standard 

deviations. It was performed four error analyses to reveal the behavior of the methods in different 

conditions of σe and n (table 2). 

After some examination of the analysis results the following conclusions were reached for the cases 

tested: 

 For both methods, an increase in the value of σe causes an increase in the standard deviations 

of the errors of te and ye. 

 The means of the errors of te and ye are negligible compared to their respective standard 

deviations. Thus, an unbiased estimation of the end-point value can be obtained by application 

of any of the two methods. 

 The performance of the LM method was markedly superior than the SD method for most of 

the simulations performed. For all error analyses of te using fourteen data points, the absolute 

value of LM error was smaller than the respective absolute value of SD error in approximately 

95% of the simulations. 

 The LM method exhibited improved performance with an increase of the number of data 

points (n) while the SD method did not show this behavior. 

 

Table 2. Error analyses of te for different conditions. 

Error analysis 1 2 3 4 

Standard deviation of ei (σe) 0.0008 0.0016 0.0024 0.0008 

Number of data points (n) 14 14 14 10 

L
M

 

m
et

h
o

d
 

Mean of e(te) 6.48×10
-6

 8.60×10
-5

 9.30×10
-5

 1.09×10
-4

 

Standard deviation of e(te) 0.0145 0.02896 0.0429 0.02523 

S
D

 

m
et

h
o

d
 

Mean of e(te) 2.30×10
-4

 1.87×10
-4

 -2.14×10
-4

 -6.66×10
-5

 

Standard deviation of e(te) 0.2163 0.3909 0.5088 0.2161 

Percent of simulations            

│es(teLM)│ ≤ │es(teSD)│ 
95.0 94.8 94.5 91.9 
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4.  Conclusions 

The error analyses revealed that in most cases the Levenberg-Marquardt method compared to the 

second derivative method reduces drastically the error of the end-point detection from potentiometric 

titrations. In consequence, the application of the Levenberg-Marquardt method can increase the 

accuracy of the end-point value from potentiometric titration data and contribute to a better 

characterization of reference materials by using coulometric titration with potentiometric end-point 

detection. 
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