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Abstract. In this paper we propose an Ising model which simulates multiple financial
time series. Our model introduces the interaction which couples to spins of other systems.
Simulations from our model show that time series exhibit the volatility clustering that is often
observed in the real financial markets. Furthermore we also find non-zero cross correlations
between the volatilities from our model. Thus our model can simulate stock markets where
volatilities of stocks are mutually correlated.

1. Introduction
The financial markets are considered to be complex systems where many agents are interacting at
different levels and acting rationally or in some cases irrationally. Such financial markets produce
a rich structure on time variation of various financial assets and the pronounced properties of
asset returns has been classified as the stylized facts, e.g. see [1]. The most prominent property
in the stylized facts is that asset returns show fat-tailed distributions that can not be explained
by the standard random work model. A possible explanation for the fat-tailed distributions is
that the return distributions are viewed as a finite-variance mixture of normal distributions,
suggested by Clark[2]. In this view asset returns follow a Gaussian random process with a time-
varying volatility. This view, using realized volatility[3, 4] constructed from high-frequency data,
has been tested and it is found that the asset returns are consistent with this view[5, 6, 7, 8, 9, 10].

Bornholdt proposed an Ising model designed to simulate financial market as a minimalistic
agent based model[11]. The Bornholdt model successfully exhibits several stylized facts such
as fat-tailed return distributions and volatility clustering[11, 12, 13, 14]. Variants of the model
have also been proposed and they exhibit exponential fat-tail distributions[15] or asymmetric
volatility[16]. The view of finite-variance mixture of normal distributions has also been tested
for the Bornholdt models and it is shown that returns simulated from the models are consistent
with the view of the finite-variance mixture of normal distributions[17, 18].

So far the models studied only dealt with a financial market where a single asset is traded.
In the real financial markets various financial assets are traded and they are correlated each
other. Measuring correlations between assets is important to investigate stability of financial
markets and many studies have been conducted to reveal properties of correlations in financial
markets, e.g. [19, 20, 21, 22, 23]. In this study we propose an Ising model that extends the
single Bornholdt model to a multiple time series model. Then we perform simulations of our
model and show that the model can exhibit correlations between the return volatilities.
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2. Multiple Time Series Ising Model

Let us consider a financial market where K stocks are traded and assume that each stock is
traded by N = L x L agents on a square lattice. Each agent has a spin s; and it takes two
states s; = £1 corresponding to "buy” (+1) or "sell” (-1), where i stands for the ith agent. The
decision of agents are made probabilistically according to a local field. In our model the local

field hz(-k) (t) at time ¢ is given by

K
) =3 750 (1) - asP MO )] + 3 MO 1), (1)

(i,3) j=1

where (7, j) stands for a summation over the nearest neighbor pairs, k& denotes the kth stock and
M®) (t) is the magnetization that shows an imbalance between "buy” and ”sell” states, given by
M® () =S, sl(k) (t). J is the nearest neighbor coupling and in this study we set J = 1. The
third term on the right hand side of eq.(1) describes the interaction with other stocks that is not
present in the Bornholdt model. More precisely this interaction couples to the magnetization of
other stocks and introduce an effect of imitating the states of other stocks. The magnitude of the
interaction is given by the interaction parameters that form a matrix =, having zero diagonal
elements, i.e. 7y = 0. As in the Bornholdt model the states of spins are updated according to
the following probability.

st +1) =+1 p=1/(1+exp(-26h{ (1)), (2)
st +1) =—1 1-p.
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Figure 1. Time series of the magnetization for =~ Figure 2. Time series of the magnetization for
stocks 1 and 2 at v = 0.0. stocks 1 and 2 at v = 0.15.

3. Simulations

In this study we perform simulations for K = 2, i.e. we simulate a stock market consisting of
two stocks. The simulations are done on 120 x 120 square lattices with the periodic boundary
condition. We set simulation parameters to (3, «, J) = (2.0, 30, 1). Here we assume symmetric -,
i.e. y12 = 721, which means that the stocks we consider give the same interaction effect to other
stocks each other. Here we make simulations for five values of v, v = (0.0,0.05,0.07,0.10,0.15).
The states of spins are updated randomly according to eq.(2). After discarding the first 10*
updates as thermalization we collect data from 5 x 10° updates.
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Figure 3. Time series of return for stocks 1 and 2 at v = 0.0.
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Figure 4. Time series of return for stocks 1 and 2 at v = 0.15.

Fig.1 shows the time series of the magnetization for two stocks ( 1 and 2 ) at v = 0.0.
Simulating at v = 0.0 means that two stocks are independent. On the other hand Fig.2 shows
the time series of the magnetization at v = 0.15 where the interaction between stocks are present
and we find that synchronization occurs between the magnetizations. For other v > 0 we also
see similar synchronization between the magnetizations to a certain extent.

Such synchronization also occurs between the returns defined by Return(t) = (M(t+ 1) —
M(t))/2 as in [13]. The time series of returns at v = 0.0 and 0.15 are shown in Figs. 3 and
4 respectively. It is clearly seen that volatility clustering occurs in the return time series. At
v = 0.0, however, we see no synchronization between the volatility clusterings. On the other
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Table 1. Cross correlation between the volatilities for various 7.
y 0.0 0.05 0.07 0.10 0.15
cross correlation | 8.2 x 107% 58 x 1072 84x 1072 0.15 0.31

hand some volatility clusterings synchronize at v = 0.15.

To quantify the strength of the synchronization we measure cross correlations between
volatilities from the two stocks. The cross correlation between the Ith and the mth volatilities
(O () = D ON ™ (E) — W™ (8)))

UU)U("U
and its standard deviation of the [th stock respectively. Here we define the volatility by the

absolute value of return. Table 1 shows the values of cross correlations for various v and we find
that the cross correlation of volatility increases with .

is given by

, where v and ¢ stands for the volatility

4. Conclusion

We have proposed an Ising model which can simulate multiple financial time series and performed
simulations of a stock market with two stocks. The interaction parameter v in the model tunes
the strength of correlations between stocks. We calculated cross correlation between volatilities
of the two stocks and found that the cross correlation increases with . Therefore our model
serves to simulate stock markets where volatilities of stocks are mutually correlated. Since we
have demonstrated the model including only two stocks it may be desirable to further investigate
the more realistic model that includes many stocks.
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