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Abstract. This paper are presented novel algorithms for exact limits of a broad class of infinite 
alternating series. Many of these series are found in physics and other branches of science and 
their exact values found for us are in complete agreement with the values obtained by other 
authors. Finally, these simple methods are very powerful in calculating the limits of many 
series as shown by the examples. 

1. Introduction 
In a previous paper [1] some novel algorithms which made use of polygamma functions for exact 
limits of a large branch of infinite series were introduced; moreover, the Laplace transform is used to 
find the sum of some of the infinite series. However, because of their importance in physics, remained 
pending deal the exact limits of alternating series which converge. The infinite series, including the 
alternate, are an important part of a course of mathematical analysis. In particular, alternating series 
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 is convergent and is the Leibnitz definition for the irrational  number. To consider the 

infinite series in the literature is natural to introduce some convergence criteria due to Cauchy, 
Kummer, D'Alembert, and Gauss authors [2], which ensure us the convergence of infinite series. In 
addition, special forms of the term of the alternating series there are some criteria or tests that help 
quickly conclude its convergence: absolute convergence, ratio test and the root criteria [3]. However, 
the application of these criteria does not allow us to know their limits. In this paper, we present some 
algorithms to compute the exact limit of a broad class of alternating series which converge. This work 
is divided in four parts: This introduction, Section 2 illustrates the method; in Section 3 the method is 
generalized. Finally, Section 5 presents conclusions and future projects. 

2. Special Cases of Alternantes Series

2.1 The infinite Series
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This series is denoted as: 
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where 1b  is an integer. Using the Feynman identity, 
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where 0A , the infinite series in equation (1) becomes 
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Introducing the sum into the integral in equation (4), and changing 
nb xy e  variables, one has 
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Considering now N  , the result is 
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Equation (5) is the most general expression result of this section. As an application, we present the 
following examples: 
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2.2 The Infinite Series 2
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Following the same algorithm as in the previous subsection  
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As an application, the authors present the following examples 
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2.3 The Infinite Series
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For this series denoted, ( , )S n a one has 
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where we have used the Feynman’s formula (2). 
Then, interchanging the order of addition and integral, the equation (7) becomes 
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In the limit as N , the result is  
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Changing xz e  variables, the equation (9) finally is expressed as:  
0
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At this point, it is important to mention that integral given by equation (9), cannot be written in terms 
of Eulerian functions [4] (polygamma functions), due to the plus sign in the binomial denominator. In 
contrast to those discussed in the Ref. [1] previously mentioned. However, the equation (9) is the most 
general expression result of this section. As one application, we present the following examples 
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This series is found in Ref [5]. 

3. Series of type
1
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This series is denoted as 
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The Feynman identity applied to this case is 
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Following the same procedure as was used in section 2, leads to the following result: 
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where xz e , the variable change is used.  
Applying equation (13) the already reported result is obtained  
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3.1 Series of type
1
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The Feynman identity applied to this case is 
11

1 !
0

1 m Ax
m m x e dxA .        (14) 

Following the same procedure as was used in section 2, leads to the following result: 
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Applying equation (15), we have  
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whose value was found in section 2. As another examples, we find 
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This series is found in Ref [5]. 

3.2 Series of type 
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Following the same procedure, leads to the following result: 
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Changing 2z w  variables, the equation (16) finally is expressed as:  
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Finally one has the following examples 
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This series is found in Ref [5]. 
 
5. Conclusions 
The limits of a broad class of alternating series which converge were obtained using some novel 
algorithms. These algorithms are general and can be used to evaluate many de these series that are 
important in different branches of the physics, as well as in other relevant science applications. 
Moreover, we can apply these algorithms to other types of alternating series, not considered in this 
article. 
 
References 
[1] H. Luna Garcia, and Luz Maria Garcia, Journal of Mathematics and Systems Science 3:110-
113(2013). 
[2] G.B. Arfken, H.J. Weber, and F.E. Harris. Mathematical Methods for Physicists: A Comprehensive 
Guide, 7th ed., Elsevier Academic Press, USA, 2012, pp. 321-344 (Chapter 5).  
[3] M. Spivak. Calculus, 2nd ed., Editorial Reverté, España, 1992, pp. 641-678 (Chapter 22)
[4] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and 
Mathematical Tables, Dover Publications, USA, 1964,556-566(Chapter 15) 
[5] I.S. Gradshteyn, I.M. Ryzhik, A. Jeffrey, D. Zwillinger, Table of Integrals, Series and Products, 
6th ed., Academic Press, USA, 2000, pp. 321-347(0 Introduction). 

IC-MSQUARE 2014 IOP Publishing
Journal of Physics: Conference Series 574 (2015) 012117 doi:10.1088/1742-6596/574/1/012117

4


