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The surface tension γ and the pressure difference ∆p for spherical membranes are
calculated using Monte Carlo simulation technique. We study the so-called tethered and fluid
surface discrete models that are defined on the fixed-connectivity (tethered) and dynamically
triangulated (fluid) lattices respectively. Hamiltonians of the models include a self-avoiding
potential, which makes the enclosed volume well defined. We find that there is reasonable
accuracy in the technique for the calculation of γ using the real area A if the bending rigidity κ
or A/N is sufficiently large. We also find that γ becomes constant in the limit of A/N → ∞ both
in the tethered and fluid surfaces. The property limA/N→∞ γ = const corresponds to certain
experimental results in cell biology.
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1. Introduction
The surface tension γ [1, 2, 3] and the pressure difference ∆p = pin−pout, where pin(pout) is
the pressure inside (outside) the surface, potentially reflect the microscopic interactions of the
constituent molecules. Therefore, it is interesting to study γ and ∆p by means of stochastic
simulation of mechanical processes on the triangulated surface models such as Helfrich-Polyakov
(HP) [4, 5]. The HP model is a coarse grained mathematical model for the microscopic
interactions of lipid molecules [6]. The frame tension τ is defined via the macroscopic surface
energy, which equals τAp, where Ap is the projected area. This Ap may be regarded as the
area contained within the boundary Γ(⊂ R2) fixed in R3 [7, 8]. For this reason, it is widely
accepted that on the surfaces spanning Γ the frame tension τ is correctly calculated by using
the projected area Ap of Γ rather than the real area A of the surface.

However, Ap is not always well-defined on the surfaces without boundary. In fact, we can
use only the real area A in both simulations and data analyses. Therefore we have the surface
tension γ of the HP model defined on spherical surface which has no boundary and the frame
tension τ evaluated by ∆p and the Laplace formula. Thus, we should prove that γ may be
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correctly defined through the real area A by comparing it with τ . γ and τ are expected to be
identical in the limit of κ(∼ 1/kBT ) → ∞ [8].

In this paper, we calculate the surface tension γ for spherical membranes and check whether
γ is consistent with the frame tension τ , which is obtained from ∆p and the Laplace formula.

2. Model
The partition function Z is defined by

Z =
∑
T

∫ ′ N∏
i=1

dri exp [−S(r, T )] , (1)

where
∑

T denotes the sum over all possible triangulations T . This
∑

T is included in Z only for
the fluid surface model; the fixed-connectivity model is defined by Z without

∑
T . The prime

in
∫ ′ ∏N

i=1 dri denotes that the center of mass of the surface is fixed to the origin of R3, and
the surface has no boundary Γ. The discrete Hamiltonian S(r, T ) is defined on a triangulated
sphere with ri(i=1, · · · , N), which are the positions of vertices, and T such that

S(r, T ;κ,A0,∆p) = S1 + κS2 + UFix(A0)−∆pV + US,

S1 =
∑
ij

(ri − rj)
2 , S2 =

∑
ij

(1− ni · nj), (2)

where S1 is the Gaussian bond potential and S2 the bending energy with the bending rigidity
κ[1/kBT ]. The symbol ni denotes the unit normal vector of the triangle i, and

∑
ij of S1 and

S2 denote the sum over all nearest neighbor vertices and triangles respectively. The potential
UFix(A0), which fixes the surface area A to a constant A0 without using the boundary Γ, is
defined by

UFix(A0) =

{
∞ (|1−A/A0| > ϵA = 1/NT ),
0 (otherwise),

(3)

where NT is the total number of triangles NT =2N−4. Note that the surface is allowed to have
only in-plane deformation if ϵA is exactly zero, therefore ϵA should be fixed to a small positive
number. The energy −∆pV with the enclosed volume V is well-defined only for the self-avoiding
(SA) surface models [9]. Thus, the energy −∆pV must be included in the Hamiltonian together
with the SA potential US defined by US =

∑
∆∆′ US(∆,∆′) where

∑
∆∆′ denotes the sum over

all non-nearest neighbor triangles and

US(∆,∆′) =

{
∞ (triangles ∆∆′ intersect),
0 (otherwise).

(4)

This potential is considered as an extension of the one of Doi-Edwards model for polymers [10].
The partition function Z is independent of the change in the integration variables r → r′.

This property is called the scale invariance, which can be expressed by ∂α logZ(αr)|α=1 = 0.
The surface tension γ is obtained from this property as follows: It is easy to see that S2

and US are scale independent and that S1(αr) = α2S1(r), ∆pV (αr) = α3∆pV (r). Since
UFix(A0;αr) = UFix(α

−2A0; r), we see that the corresponding derivative ∂α logZ(A0;αr)|α=1

can be written as −2A0∂A0 logZ(A0; r). Note that the partition function for the macroscopic
membranes is given by

Zmac = exp [− (γA−∆pV )] , (5)
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Figure 1. γ vs. κ at (a) a0(= A0/NT ) = 0.14 (tethered), (b) a0 = 0.12 (fluid), (c) a0 = 0.5
(tethered) and (d) a0=0.5 (fluid). The symbols ⃝ (×, •, △, ▽) denote the results obtained by
the constant volume (area) simulations. The lattice size is N=1442.

where V is the enclosed volume. We have

γ|A = (2⟨S1⟩A,∆p − 3∆p⟨V ⟩A,∆p − 3N)/(2A0), (6)

where ⟨S1⟩A,∆p and ⟨V ⟩A,∆p are obtained by the constant area simulations.
The pressure difference ∆p in Zmac of Eq. (5) can also be calculated using almost the same

model and procedure as those described above for γ|A. Indeed, the constraint UFix(A0) in Eq.
(2) can be replaced by UFix(V0) to fix the enclosed volume V to V0; and the energy −∆pV
should be removed from the Hamiltonian. In this model, ∆p is not an input parameter but
an output. Thus, the Hamiltonian is given by replacing A0 with V0 in Eq. (3) such that
S(r, T ;κ, V0) = S1 + κS2 + UFix(V0) + US.

From the scale invariance of Z in Eq. (1) and Zmac in Eq. (5), we obtain

∆p|V = (3N − 2⟨S1⟩V )/(3V0). (7)

The symbol ∆p|V is used for the calculated pressure to distinguish it from the input parameter
∆p in Eq. (2). It must be emphasized that ∆p|V does not suffer from the problem encountered
in the calculation of γ|Ap .

3. Simulation results
The variables r and T are updated by the canonical Metropolis MC technique, where T is
updated by using the standard bond flip technique. We use the surface of size N =1442. The
total number of MCS is about 5× 106 including 5× 105 thermalization MCS.

3.1. Dependence of γ|A on κ
We firstly perform MC simulations by varying κ with constant V0 to check whether the MC
results of γ|A are consistent with those of ∆p|V . The constant V0 is fixed by the triangle areas
so that the mean value a0 = A0/NT becomes a0 = 0.14 (tethered model) and a0 = 0.12 (fluid
model). From the MC results ∆p|V of the tethered and fluid models we obtain γ|V,Lap using the
Laplace formula

γ|V,Lap = (2/R)∆p|V , R = (3V0/4π)
1/3 . (8)

These results are plotted (⃝) in Figs. 1(a)–(d). This γ|V,Lap is completely different from γ|A
because γ|V,Lap (γ|A) is obtained by the constant volume (area) simulations. Indeed, the sign
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of γ(= γ|A) of the surface expanded by its area in general is different from γ(= γ|V,Lap) of the
same surface expanded by its volume. This comes from the definition of Zmac in Eq. (5). Note
also that the surface shape remains spherical in the constant V0 simulations even in the limit of
κ→0 for both tethered and fluid models.

Next, we perform the simulations with constant area A0 and ∆p such that A0=⟨A⟩V and

(i)∆p = −∆p|V , (ii)∆p = 0, (iii)∆p = −2∆p|V , (iv)∆p = ∆p|V , (9)

where ⟨A⟩V and ∆p|V are the output of the first simulations. Under these four different
conditions, we obtain the surface tensions γ|A from Eq. (6). We predict that the simulation
results γ|A(κ) satisfy

(i)γ|A = 0(×), (ii)γ|A = −γ|V,Lap(•), (iii)γ|A = γ|V,Lap(△), (iv)γ|A = −2γ|V,Lap(▽). (10)

These equalities correspond to the conditions in Eq. (9) (see Fig. 1).
The predictions in Eq. (10) come from the expectations

V0 = ⟨V ⟩A,∆p, ⟨S1⟩V = ⟨S1⟩A,∆p, (11)

which are independent of∆p. It is easy to prove the predictions in Eq. (10) using Eq. (11). These
equations are physically almost clear because the enclosed volume V0 is uniquely determined by
its surface area A0 if the surface is a sphere. Figure 1 (b) shows that (iii) γ|A=γ|V,Lap is slightly
broken in the region κ≃5. The reason of this deviation is that the surface shape becomes prolate
under the negative pressure ∆p=−2∆p|V at κ≃5 [11, 12].

The prediction (ii) of Eq. (10) in the small κ region is broken as we see in Figs. 1(c),(d).
This deviation appears only because of the difference between A0 and Ap expected in that
region. Indeed, γ|A (γ|Asp) is slightly smaller (larger) than −γ|V,Lap, where γ|Asp is calculated

by replacing A0 with Asp = 4π (3⟨V ⟩A/4π)2/3 in Eq. (6). This discrepancy implies that Ap is
in the range Asp<Ap<A0, because γ|V,Lap in Eq. (8) is expected to be correct due to the fact
that the surface remains spherical in the volume constant simulation in the whole region of κ
as mentioned above. Note that the prediction (i) of Eq. (10), which is not depicted, is satisfied
also in the whole region of κ including κ=0 for a0=0.5.

3.2. Dependence of γ on A/N
Now we proceed to an additional check for the MC results of γ|A and γ|V,Lap obtained by the area
and volume constant simulations, respectively, by varying A0/NT (=a0) with fixed κ. In contrast
to the check described above, these two different simulations can be performed independently.
Thus we obtain ∆p|V , from which γ|V,Lap is calculated by using the Laplace formula in Eq. (8).
Therefore we expect that the simulation results satisfy (see Figs. 2(a)–(h))

−γ|V,Lap(•) = γ̄|A,∆p(⃝), with γ̄|A,∆p := (2⟨S1⟩A,∆p − 3N) /(2A0). (12)

The expectation in Eq. (12) is obtained by using the relations (as functions of a0)

A0 = ⟨A⟩V , ⟨S1⟩A,∆p = ⟨S1⟩V . (13)

These relations also explain why we expect the surface areas to be the same in both simulations
at least for sufficiently large a0. The relations in Eq. (13) are weaker than those of Eq. (11) in
the sense that the surface shape of the area constant simulation is not necessarily identical to
the one of the volume constant simulation: stomatocyte, cup-like, and dumbbell, even branched-
polymer, are allowed. We note that the surface shape of the latter simulation must be spherical
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Figure 2. −γ|V,Lap (•) and γ̄|A,∆p (⃝) vs. a0(= A0/NT ) for the tethered and fluid models.
∆p=0.2,−0.3, 0, 0 are assumed for the constant area simulations. The lattice size is N=1442.

because the Laplace formula for a sphere is assumed to yield γ|V,Lap. This requirement is always
fulfilled as mentioned above.

The result that γ|A,∆p=0 (or −γ|V,Lap) becomes constant in the limit of a0 → ∞ in both
tethered and fluid surfaces corresponds to the experimental fact observed in biological cells
[13, 14].

This work is supported in part by the Grant-in-Aid for Scientific Research (C) Number
26390138. We acknowledge the support of the Promotion of Joint Research 2014, Toyohashi
University of Technology. We are grateful to K. Osari and S. Usui for the computer analyses.

References
[1] Jan Ambjörn, Bergfinnur Durhuus, and Thordur Jonsson, Phys. Rev. Lett. 58, 2619 (1987).
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