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Abstract. Solvation of bio-molecules in water is severely affected by the presence of co-solvent
within the hydration shell of the solute structure. Furthermore, since solute molecules can range
from small molecules, such as methane, to very large protein structures, it is imperative to
understand the detailed structure-function relationship on the microscopic level. For example,
it is useful know the conformational transitions that occur in protein structures. Although
such an understanding can be obtained through large-scale molecular dynamic simulations, it
is often the case that such simulations would require excessively large simulation times. In this
context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions
to global thermodynamic properties, together with the recently developed technique, called
finite size scaling, may provide a better method to reduce system sizes, and hence also
the computational times. In this paper, we present molecular dynamics trial simulations
of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions.
In particular we compare two different methods of calculating the relevant Kirkwood-Buff
integrals. The first (traditional) method computes running integrals over the radial distribution
functions, which must be obtained from large system-size NVT or NpT simulations. The second,
newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by
counting the particle number fluctuations in small, open sub-volumes embedded within a larger
reservoir that can be well approximated by a much smaller simulation cell. In agreement with
previous studies, which made a similar comparison for aqueous co-solvent solutions, without
the additional solvent, we conclude that the finite size scaling method is also applicable to the
present case, since it can produce computationally more efficient results which are equivalent to
the more costly radial distribution function method.

1. Introduction
The solvation thermodynamics of solutes in water are extremely sensitive to the presence and
concentration of co-solvents such as alcohols, osmolytes and salts [1, 2, 3, 4]. Their presence in
the hydration shell of the solute in an aqueous co-solvent solution usually determines how well
the solute is solvated by the solution [1]. In general, the free energy of solvation depends on
the relative proportions of co-solvent and water in the mixture, and the more negative the free
energy of solvation, the greater the extent to which the solute is solvated by the solution.

Understanding the effects of co-solvents on the solvation of solutes in aqueous co-solvent
solutions, via calculations of the solvation free energy, for instance, may shed light on why
proteins tend to unfold or denature in the presence of alcohols and urea [3]. It may also help
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to explain the salting in and out effects on hydrophobic solutes, due to favourable interactions
between the solute and large monovalent ions of low charge density on the one hand, and
unfavourable interactions between the solute and small ions of high charge density, on the other
[2, 4].

In a recent study, Ganguly and Van der Vegt [5] have compared the efficiency of the so-called
finite-size scaling method, first introduced by Schnell et al. [6], to the more traditional method
of calculating the Kirkwood-Buff integrals (KBIs) via the radial distribution functions. Ganguly
and Van der Vegt [5] consider the full range of concentrations of methanol-water and urea-water
systems and conclude that the finite size scaling method (also called the fluctuation or sub-
box method, see Refs. [7, 8, 5]) can provide accurate KBIs for system sizes as small as 2000
molecules, which is about a factor of ten smaller than the largest system size used in the present
work, which is the minimal size required for the accurate computation of the radial distribution
functions in the limit of large distances [9].

In this paper we further explore the validity of the two, above-mentioned methods by
performing molecular dynamics (MD) simulations of another very important test case; namely,
that of the solvation of methane (a hydrophobic solute) in a methanol (co-solvent) and water
(solvent) mixture. In agreement with the previous results [5], which were obtained for for
aqueous co-solvent solutions only, our results demonstrate that the finite size scaling method
may also be used to improve the efficiency in aqueous co-solvent systems with the addition of a
solute, such as methane.

2. Theory
2.1. Kirkwood-Buff theory of solutions
Macroscopic thermodynamic properties of solute-water-co-solvent systems can be directly
obtained from microscopic molecular distributions. More specifically, the Kirkwood-Buff theory
of solutions [10, 11] connects fluctuations in the grand canonical ensemble to macroscopic
thermodynamic properties through the so-called Kirkwood-Buff integrals (KBIs) between
components i and j of the solution

Gij = 4π
∫ ∞

0

(
gµV Tij (r)− 1

)
r2dr (1)

= V

(
〈NiNj〉 − 〈Ni〉 〈Nj〉

〈Ni〉 〈Nj〉
− δij
〈Nj〉

)
(2)

where 〈 〉 denotes the time and ensemble average, V is the volume of the simulation domain, Ni

is the number of particles of component i, and gµV Tij (r) is the radial distribution function in the
grand canonical (µV T ) ensemble. Gij , the KBI between component i and j, is a local quantity
that measures the deviation of the intermolecular distribution from that of a random one, i.e.,
an ideal gas. Hence, it is also a measure of the affinity of these two components for each other
in the solution environment.

The macroscopic quantity that is of interest in this work is the free energy of solvation of the
solute in the methanol-water mixture. This quantity can be expressed in terms of the Gij and
the solution component number densities ρi as(

∂∆Gc

∂ρc

)
p,T

=
−RT (Gcc −Gcw)
1 + ρc (Gcc −Gcw)

(3)

for a binary system of water (w) and co-solvent (c), and as(
∂∆Gs

∂xc

)
p,T

= lim
ρs→0

RT (ρw + ρc)
2

η
(Gsw −Gsc) (4)
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for a ternary system in the limit of infinite dilution of the solute [10]. Here ∆Gs is the free energy
of solvation of the solute, xc is the co-solvent mole fraction, R is the universal gas constant, T
the temperature, and η = ρw + ρc + ρwρc (Gww +Gcc − 2Gcw).

This paper outlines two independent methods for computing the right-hand side of Eq. (1)
and Eq. (2) and compares the results obtained from each method. The first method involves
generating the gµV Tij (r) at every concentration by MD simulation of a system which is large
enough to permit the accurate evaluation of the integral on the right-hand side of Eq. (1). The
second method, that of finite size scaling, permits the evaluation of the right hand side of Eq. (2),
as described in the next section.

2.2. Finite Size Scaling
The KBI between component i and j for a given methanol concentration can be calculated
efficiently by an innovative particle counting and extrapolation scheme referred to as finite size
scaling [6, 7, 8]. This scheme involves computing the KBI by extrapolation to a system of
theoretically infinite size which produces more accurate values for Gij , even at relatively small
system sizes. The first step involves repeating a count of the number of particles of type i and
j that fall within a certain sub-volume, also called a volumetric pixel (voxel). A large number
of voxels of a fixed volume are randomly positioned within the simulation domain, without
touching the boundary. By counting the numbers of particles in each voxel at each time step,
the averages required in Eq. (2) are obtained. This process is repeated for a range of different
voxel volumes. In theory, the ideal voxel volume should be larger than the correlation length
of the system, and much smaller than the overall volume of the simulation domain, so that the
simulation domain can still act as a particle reservoir to ensure that the ensemble of voxels do
approximate a grand canonical ensemble. This means that there is an optimal range of voxel
volumes for which the KBI will scale linearly with 1/L, where L is a linear dimension of the
voxel (in the case of a sphere, L would be the diameter). In practice, a good approximation to
a grand canonical ensemble can be obtained by using a simulation domain with approximately
20000 molecules or more. (See, for example, Fig. 2 of Ref. [9].)

For a given concentration, a plot of Gij as a function of 1/L will show the expected linear
relationship over the optimal range of voxel volumes. The KBI value corresponding to a
(theoretically) infinite system size may then be obtained by linearly extrapolating the value of
Gij back to the ordinate (1/L = 0) of the graph, where L is infinite. The KBIs thus determined
can then be compared to those obtained directly from Eq. (1).

3. Methodology
Five mixtures of methanol and water were prepared with the concentrations of methanol given by
xc = 0.00, 0.24, 0.50, 0.75 and 1.00 mole fraction. The solvent co-solvent system always contained
a total of 20000 molecules. An additional 250 methane molecules were added as solute.

In order to simulate the mixtures, the GROMACS molecular dynamics simulation package
was used [12]. The methanol and water molecules were modeled using the GROMOS43a1 and
SPC water force fields, respectively. All atom simulations were carried out in the NpT ensemble
with pressure maintained by the Berendsen Barostat at a pressure of 1 atm and a coupling time
of 0.5 ps [13]. The integration time step used was 1 fs for all concentrations. All the simulations
were allowed to equilibrate for 15 ns, after which the trajectory was extended by a further
15 ns. Only the last 15 ns of the trajectories were used to calculate the KBIs. The electrostatic
interactions in the all atom simulations were handled by means of the particle mesh Ewald.

Calculations of the KBIs, based on the particle fluctuation method (Eq. (2)), were
implemented in the Python programming language. Several Python scripts were developed
to extract the coordinates of each atom from the system trajectories and then to count the
number of each atomic species within the voxels.
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4. Simulation results
Initially, to test the water and methanol force fields, a detailed comparison of the computed
KBIs was made with the experimentally determined KBIs from Refs. [14, 15]. Figure 1 shows
the KBIs, as calculated from the RDFs (solid lines) for a 50% methanol-water mixture. The
experimental values are given by the horizontal dashed and dotted lines for EXP 1 (Ref. [14])
and EXP 2 (Ref. [15]), respectively. In this simulation there were 10000 methanol and 10000
water molecules. Figure 1 shows that the KBIs reach a reasonably well-defined plateau beyond
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Figure 1. (Color online) The Kirkwood-Buff Integrals (KBIs) calculated via the radial
distribution functions (solid curves) compared to the experimental values in references [14] (EXP
1) and [15] (EXP 2).

r = 1.5 nm, which is a good indication that the chosen system size for this work (20000 molecules
in total) is sufficiently large. We arrived at this size by starting with a smaller system size and
then doubling the system size until convergence in the KBIs was observed. Thus our system is
sufficiently large to approximate the thermodynamic limit. In spite of this, however, we could
not obtain agreement (within the experimental uncertainties) for concentrations of methanol
below about 15% and we attribute this discrepancy to the well-known inaccuracies in the force
fields employed here [16, 17, 18]. For the present work, in which our main aim is to compare
the KBIs obtained from the same force field via two different methods, such inaccuracies in the
force fields should not matter, and in view of the difficulties associated with re-parameterization
of the force fields [18], we have chosen to ignore this problem in the present work.

In Fig. 2 we illustrate how the fluctuation method was used to obtain the KBIs via Eq. (2).
In Fig. 2 the diameter L of the sample sub-volume (in this case a sphere) was varied from
about half the total simulation box size, down to one twentieth of the simulation box size. As
expected from theory [8], the KBI value (in this case for water-water) scales linearly over a
certain range of sample system voxels. The KBI for a system of infinite size is therefore well
approximated for each concentration by extrapolating to best line fit to infinite L, i.e. to the
intercept corresponding to 1/L = 0. Figures 5 (a) to (e) show comparisons of the KBIs obtained
via the fluctuation method (Eq. (2)) and the radial distribution functions (Eq. (1)) for five
different concentrations of the methane, methanol and water system. In Fig 5 (a), which is for
pure water, the agreement between the two methods is satisfactory. Even though the system
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Figure 2. (Color online) Illustration of the method of finite size scaling for four different
concentrations of co-solvent for the methane (250 molecules), methanol (co-solvent) and water
system.

contains only 250 methane molecules, the RDF method still produces a KBI which shows a
well-defined plateau, which indicated that in the calculation of the KBI, via the RDF method,
the 15 ns trajectory was sufficiently long for the purposes of these calculations. In Fig. 5 (b)
the two methods do not agree very well and the reason for this is not clear at present. One
possibility could be that the inaccuracies in the methanol force field at lower concentrations
produce unphysical clustering. The resolution of such clustering effects via the fluctuation
method may require the use of much longer system trajectories (longer than the 15 ns used
here).

5. Discussion and conclusion
We have developed a new, biologically relevant test case in order to compare two important
methods for the calculation of Kirkwood-Buff integrals from molecular dynamic simulations.
Specifically, we have compared the two methods for simulations of the hydration of methane
(a hydrophobic solute) in an aqueous co-solvent solution. Unlike the traditional method, which
requires the computation of radial distribution functions in the limit of large distances, the main
advantage of the finite-size scaling method is that it can make use of relatively small systems to
obtain results that are comparable to those of larger systems that would require substantially
longer simulation times. This advantage is due to the analytical finite-size scaling relation [6],
which allows the results from successively smaller sub-boxes to be extrapolated to systems which
approach the thermodynamic limit.

We note that the finite size scaling method which we have employed here made use of cubic
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sub-volumes to determine the particle fluctuations. This geometry becomes problematic when
the linear dimensions of the sub-volume voxel are on the order of the sizes of the molecules
themselves [8]. These so-called nook and corner effects can be avoided by using spherical sub-
volumes instead [6, 7, 8]. Although we have not done so in the present work, we thus expect that
the agreement between the two methods discussed here could be improved by using spherical
sub-volumes instead of cubes. Finally we note that problems with the employed force fields
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Figure 3. (Color online) Comparison of the
KBIs obtained via the fluctuation method
(Eq. (2)) and the radial distribution functions
(Eq. (1)) for five different concentrations of
the methane, methanol and water system.
The correspondence between the labels in the
legend (as read down the list in the legend)
and the curves plotted in each figure is from
top to bottom.

have prevented us from making a meaningful comparison of the solvation free energies with the
experimental results. The difficulties associated with obtaining force field parameters that are
applicable over a wide range of concentrations and to a variety of different systems are non-trivial
[16, 17, 18], and since chemical potentials (and hence solvation free energies) are very sensitive
to force field parameters, further refinement of the force fields would be required to facilitate
a quantitative comparison of these quantities obtained from MD simulations and experimental
results. However, the present work clearly demonstrates that finite size scaling can also be used
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in the new context of an aqueous co-solvent solution with the addition of a solute, to reduce
simulation times.
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