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Abstract. In this work, we show the resolution of the rate equations in powder random lasers 
by using the Crank-Nicholson finite difference method. Light propagation in our powders is 
described by the model of light diffusion. The generalized time-dependent random laser 
equations describing our system are formed by three differential coupled equations: two 
diffusion equations for the pump and emitted light and a rate equation for the density of the 
dopant molecules in the excited state. The system has been solved for two pumping schemes 
(one-photon and two-photon excitation) and for a wide range of temporal incident pulses (from 
femtoseconds to nanoseconds).  

1.  Introduction 
Conventional lasers are usually constructed from two basic components: a gain material that is 
pumped in order to provide amplification of light and a cavity to provide feedback. However, random 
lasers replace the traditional laser cavity with a random, multiple-scattering medium. This type of laser 
becomes a subject of intense theoretical and experimental studies because of its important potential 
applications [1]. In addition, a major advantage of random lasers over regular lasers is that their 
production is cheap and the required technology relatively simple, but the laser dynamics are much 
more complex than that of the conventional laser and there is still much to understand. For example, 
scientists recently explored the mode-locking of random lasers and investigated how to control their 
operation.  

The random laser equations have been solved by using several numerical methods due to the 
difficulty of finding the exact solution: method of lines [2], Montecarlo simulation [3] and finite-
difference time domain method (FDTD) [4]. In this work, we solve these equations for two pumping 
schemes, one-photon (OP) and two-photon (TP) excitations, and for a wide range of temporal incident 
pulses (from femtoseconds to nanoseconds) by using the Crank-Nicholson finite difference method.  
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2.  Theoretical model 
Assuming a diffusive propagation of light in powder random lasers, the equations describing our 
model for one and two-photon excitations are: 
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where ( , )pW z t and ( , )eW z t∂  are the light densities at the pump and emission wavelengths 

respectively and ),( tzN  is the density of dye molecules in the excited state. The term corresponding to 

light absorption, g(z,t) is given by ( , ) v ( , )OP abs pg z t f K W z t=  and by 
2 2( , ) v ( , )TP p pg z t f W z tβ ω= ℏ

,
 for one and two- photon excitations respectively. Kabs is the one-

photon absorption coefficient of the material at the pump wavelength and β is the two-photon one. The 
volume fraction, f, occupied by the scatters has been included in the equations to take into account the 
effective part of light density which penetrates into the particles. v is the speed of light in the medium. 
σem is the stimulated emission cross section, τs is the excited state lifetime and , Dp and De, are  light 
diffusion coefficient for pump and emitted radiation, respectively. γ  is the fraction of spontaneous 
emission contributing to the laser process. In both pumping schemes, the source of diffuse radiation, 
p(z,t), is an incoming Gaussian pulse in the z direction which is extinguished along its path through the 
sample. This function  p(z,t) is different for each type of excitation. The system of equations is solved 
with the following boundary and initial conditions [5]: 

( , ) ( , ) ( , ) ( , ) 0p e p e e e e eW l t W L l t W l t W L l t t− = + = − = + = ∀   

( ,0) ( ,0) ( ,0) 0p eW z W z N z z= = = ∀  (4) 

le is the extrapolation length and L is the scattering sample thickness. 

3.  Numerical solution 
The set of coupled non linear partial differential equations (1)-(3) are numerically solved by using the 

Crank-Nicholson method.  On the condition that ( )2 /en L l h= +  is an integer, the domain (z, t) is 

discretized by two sizes of step h (spatial) and k (time): 0 and 0i e jz l ih i n t jk j= − + ≤ ≤ = ≥ .  

3.1.  One- photon excitation 
The equation (1) is solved first and the derivatives are approximated at the mesh point by  
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Replacing the derivatives (6) in the equation (1), evaluating ( , ) and ( , )g z t p z t  in the intermediate 
step between j and j +1 and using the boundary and initial condition, this equation can be written in 
matrix form as: 
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Therefore, after solving the matrix equation (6), the solutions of equations (2) and (3) can be 

determined by the solution of the following matrix system: 
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where 1
OPA  eta 1

OPB are the corresponding tridiagonal matrices and * **e e
j jN W  represents the element 

by element product of *e
jN and *e

jW . In this case the functions of the coupled equations (2) and (3) are 

computed at the time gridpoints instead of at midpoints of the temporal subinterval in order to obtain a 
system of linear equations. 

3.2.  Two-photon excitation 
The same process can be applied for two-photon excitations. Then, the equations (1)-(3) can be written 
as:  
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4.  Numerical results  
We have carried out simulations to study the laser-like emission in several powder random lasers for 
OP [5, 6] and TP [7] excitations. The theoretical results are in a good agreement with the experimental 
data which validates the Crank-Nicholson method. As an example, we show the theoretical pulse 
shortening calculated from the reduction of the full width at half maximum (FWHM) of the temporal 
profiles when increasing the pump energies under TP excitation in a ground powder of a silica gel 
containing Rhodamine 6G doped silica nanoparticles. As the emitted photons are collected along the 
backward direction of the incident pump beam, the time evolution of the emitted light has been 

calculated from
( , )

ˆ( ) e
e e

W z t
F t D z

z

∂= −
∂

�
 evaluated at the front sample surface(z = 0). Figure 1 shows 

the FWHM of the emitted pulse obtained as a function of the pump pulse energy for different temporal 
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incident pulses. ∆ represents the temporal half width at half maximum of incident pulse. The data have 
been fitted to a sigmoid function. The inflection points of these fits represent the threshold energy 
densities at which the light amplification begins. The dependence of the lasing threshold on the ∆ 
incident pulse has been plotted in Figure 2. As it can be observed, lasing threshold increases very 
abruptly as the value of ∆ is getting closer to the spontaneous lifetime of the material. The input values 
for these calculations are the material parameters: Kabs = 148.5 cm-1, σem = 2.5x10-16 cm2,τs (OP) = 
1.65 ns, τs (TP) = 2.1 ns, = 3.86x10-13 µm·ps, neff  = 1.16, f = 0.43. 

 

 

 

 

Figure 1. Theoretical FWHM of the 
pulses as a function of the pump 
density. (○) ∆ = 50 fs, (◊) ∆ = 20 ps, 
(□) ∆ = 200 ps, (+) ∆ = 400 ps, (×) ∆ = 
600 ps, (¤) ∆ = 1 ns. The dashed lines 
are the sigmoidal fits to the data.  

 Figure 2. Lasing threshold as a function 
of the ∆ incident pulse. The ∆ values are 
the same as in Figure 1. The dashed line 
is a guide for the eye. 

5.  Conclusion 
In this work, it is shown that the Crank-Nicholson finite difference method solves satisfactorily the 
laser rate equations of powder random lasers when a diffusive propagation of light is considered.The 
method has been applied for one and two-photon excitation. The numerically calculated results in a 
Rhodamine 6G doped ground powder agree with the corresponding experimental results [5, 7]. 
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