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1FACOM-UFU, Av. João Naves de Ávila 2121, Bl.A, 38400-902 Uberlândia-MG, Brazil
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Abstract. We introduce a fully written programmed code with a supervised method for
generating weighted Steiner trees. Our choice of the programming language, and the use of well-
known theorems from Geometry and Complex Analysis, allowed this method to be implemented
with only 764 lines of effective source code. This eases the understanding and the handling of
this beta version for future developments.

1. Introduction

One of the main problems at implementing multicast in Wide Area Networks (WAN) is the high
cost of transmissions between terminals. Cost reduction is attained by adding routers to the
network, but this increases complexity (see [1, 2]). Steiner trees have long been used in order to
optimise routes, aiming at the lowest cost possible (see [3, 4]).

The Steiner Minimal Tree (SMT) problem is NP-hard [5] but can be exactly solved for
terminals in thousands. GeoSteiner does it amazingly fast for terminals at random. Its strategy
is to look for terminals that (almost) make equilateral triangles, and then to prune sub-optimal
trees. See www.diku.dk/hjemmesider/ansatte/martinz/geosteiner for details. But when
terminals follow a pattern, GeoSteiner can be very slow. For instance, we use 4GB of RAM,
microprocessor Intel Core i5 3.2GHz, and operating system Linux Ubuntu 12.04. With this
setting GeoSteiner takes 73.02s to generate Figure 1 (compare it with Figure 2). This time
drops to only 0.06s when the 31 terminals are at random.

Moreover, the GeoSteiner algorithm cannot be easily adapted to find weightedminimal Steiner
trees. This fact, together with the slowness in patterned cases, is precisely due to the strategy
of looking for equilateral triangles.

Given a graph G = (V,E,w), a subset S ⊂ V and a weight function w, a weighted minimal
Steiner tree (WSMT) T ⊂ G is one that spans all vertices of S and also minimises the total
weight. WSMTs have many applications. Among others, they are used in network formation
games, computational sustainability and electric power networks [6, 7, 8]. The problem has
further variations, like for unity disk graphs and restrictions on w, that have been studied
recently [9, 10, 11, 12]. These and other works use heuristics for non-supervised methods. They
are fast at generating weighted Steiner Trees with good chances to be minimal. But if one really
seeks the minimum, non-supervised methods will not be reliable unless applied to few terminals.

In the last paragraph from §6 of [13] the authors commented that skill and good guesses of a
trained user can help find the SMT. Their work is previous to GeoSteiner by three decades but
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Figure 1: Non-patterned GeoSteiner output. Figure 2: Patterned SMT drawn with Xfig.

their comment is still pertinent. Indeed, one cannot always predict whether a fast algorithm
exists to solve a given problem. In that same work, Gilbert and Pollak conjectured that the
length L of an SMT always verify L ≥ Lprim · √3/2, where Lprim is the length of the Minimal
Spanning Tree (MST). This one can be obtained by Prim’s algorithm [14]. According to [15]
their conjecture is true. If so, any Steiner tree obtained from the terminals of an MST can
improve it of at most 13.4%.

It seems rather little, but if a connection is used extensively it represents a great saving in
the long-term. Moreover, in [16] the authors claim that the Gilbert and Pollak’s conjecture is
not completely answered yet. Thus it might even exist an SMT of which L < Lprim · √3/2.

A supervised programme is not suitable for thousands of terminals, except for a long-term
project distributed to a team of users and terminals in hundreds. This is still the case of sound
and video cards. Their frequent access makes it desirable to bring delay to a minimum (even a
1% decrease would count). For them we need to focus on rectilinear Steiner trees, a variation
we shall work on in future. However, in VLSI-design we have millions of terminals. For such
extreme cases supervised methods are unsuitable.

We present stree, a fully programmed code to generate WSMTs. It is written in
Matlab/Octave to spare the GUI. Moreover, many original ideas are within the code. They
are based on theorems from Geometry and Complex Analysis. This produces a very short
programme (only 855 lines, or 764 without graphical input/output), easier to understand and to
handle for future developments. The present version of our programme has didactic purposes.
It is even accessible to undergraduate students. The reader can access the link Softwares of our
webpage

http://www.facom.ufu.br/~nascimento

to download stree.zip, which contains the executable and some source codes. The link also
contains a preprint (this one with all technical detais and a user’s manual).

2. Methodology

As we mentioned in the Introduction, the MST is frequently used to construct a Steiner tree.
Prim’s algorithm is easily adaptable to find the MST for terminals that are weighted as follows:

Definition 2.1. Consider the tree T = (V,E) with weight function w : V → R
+ and 0-1

adjacency matrix aij . Then T is an MST if it minimises the total cost C given by

C =
∑

i<j

aij(wi + wj)||Vi − Vj ||, (1)

where ||Vi − Vj || = 1

2
(wi + wj)|Vi − Vj | is the connection cost between terminals Vi and Vj .
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When we have w : V → {1}, then it is the Euclidean non-weighted case. For a given set
of terminals V = {V1, . . . , Vn} and a weight function w : V → R

+, we can find the edges E
that minimise the cost C in (1) and result in an MST T = (V,E). By adding extra points
S = {S1, . . . , Sm} to V , namely Ṽ = V ∪ S, we shall find the corresponding T̃ = (Ṽ , Ẽ) such
that C̃ ≤ C. We claim that C̃ < C exactly when S �= ∅, providing one chooses a suitable
extension w̃ : Ṽ → R

+ of the weight function. The following lemma shows how to make this
choice when n = 3 and m = 1.

Lemma 2.1. Consider a triangle with vertex weights a, b and c, and suppose it admits a
classical (Euclidean) Steiner point. If s ≤ min{a, b, c} is the weight of the Steiner point, then its
connection with the vertices will cost less than any other connection through the vertices only.

Its proof and all the others’ are in our preprint (see the link Softwares of our webpage).

Lemma 2.2. Consider a full Steiner tree with n ≥ 3 terminals A1, . . . , An and Steiner points
S1, . . . , Sn−2. Add weights to their respective terminals as ai, 1 ≤ i ≤ n, and to the Steiner
points as si = min{a1, . . . , an} ∀ i. The resulting weighted tree is then a local minimum of C.

The most important consequence of Lemmas 2.1 and 2.2 is that Steiner points can be added
exactly as in the Euclidean case for arbitrary n ≥ 3. The resulting MST T̃ = (Ṽ , Ẽ) coincides
with a Euclidean non-weighted Steiner tree, which will not be necessarily the SMT. Anyway,
many results proved in [13] still hold for T̃ : Convex hull, Maxwell’s Theorem, Lune and Wedge
properties.

3. Results

Our pseudocode in Figure 3 works recursively while the connection matrix is incomplete.

Input: Set of terminals
Output: Steiner tree
1. Pts ← terminals, Connexion Matriz ← 0
2. Tree of Prim ← Compute Tree of Prim(Pts)
3. Steiner hull ← Compute Steiner hull(Pts)
4. While Connexion Matriz implies Stree non-connected

i. Subset Pts ← User’s Choice of a Subgroup(Pts)
ii. Subtree ← Compute Connection(Subset Pts)
iii. If Subtree not OK, redo Step i
iv. Else Connexion Matriz ← Connection(Subset Pts)

5. return Steiner tree (and its length)

Figure 3: The pseudocode of the stree algorithm.

The main result is our programme stree, of which some outputs are depicted in Figure
4. There we start with a Weighted Minimal Spanning Tree (WMST) obtained by the adapted
Prim’s algorithm (see Definition 2.1). Notice that a WMST can have self-intersections, but this
never happens to a WSMT because Lemmas 2.1 and 2.2 imply that any self-intersection can be
split into two Steiner points in order to lower the cost.

Basically, one uses the WMST as a reference to draw Steiner subtrees. These will build an
entire tree with good chances of being the WSMT. The weighted length is printed on the Matlab
terminal window. The user gets some feedback while drawing and can also undo some choices.
Sections 3 and 4 of our preprint are a detailed manual with hints, tutorials and illustrations.

4. Conclusions

Differently from trying a fully automated method, we propose to take advantage of the good
choices that a user can make. Many attributes like intuition, guess, practice and a bird’s-eye
view are valuable means that one cannot translate into any programming language. As long as
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Figure 4: Some steps at running the stree programme.

a task is feasible with supervision we suggest taking it into account, besides the fully automated
methods. This proposal is not new, but we endeavour to obtain a code that is both easy to run
and to understand. The programme stree is still in the beta version. Further improvements
will include more feedback to the user.
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