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Abstract. In our work, we calculate the dispersion relations for  −  based

double quantum wells (narrow gap structures). We have developed an improved 4 × 4 version
of the Transfer Matrix Approach, considering contributions from external fields when tunneling

through central barrier exists. The transverse electric field is necessary to reach the resonance

of electronic levels in asymmetric structures. The in-plane magnetic field induces the Zeeman

effect and the spin splitting of the resonant levels. We have also included abrupt barrier effects

due to the nature of the interfaces between the above materials.

1. Introduction

The use of spin better than charge in electronic devices is known as spintronics. The low power

consumption as well as the slightly dissipative transport are advantages of spin-based electronics

that have made it a center of interest in last years. In order to make the most of its applications,

the choice of material is a crucial point. Those with a narrow gap but a large Landé factor,

which will have a large spin-orbit coupling, seem to be a good option, as  − 

structures are. To be useful in practice, electronic (or hole) states with different spins must be

separated in energy. Moreover, the material must be electrically polarized [1].

In this work we analyze variations of the spin splitting in asymmetric structures, such as

asymmetric coupled quantum wells (ACQW), when transverse electric and in plane magnetic

fields are applied. We use an improved variant of 8 × 8 Kane formalism for the dispersion

relations in the vicinity of the spin anticrossings together with a 4 × 4 modified version of the
Transfer Matrix Approach . We have included contributions of the Pauli Hamiltonian and its

mixing with the effective spìn-orbit interaction, and spin splitting caused by abrupt interfaces.

2. Eigenstate problem

In the parabolic approximation we can write the Schrödinger equation for ACQW in the form

[2]: µ
 +

̂2
2

+  () +
c

¶
Ψ(p) = Ψ(p) (1)
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for the eigenfunctions Ψ(p) and eigenvalues . Here  =   denotes de barrier and well

regions, respectively. In the above equation 

 is the kinetic energy in the in-plane direction,

which includes the effective mass . The 

 () energy is () in the wells, and ∆ + ()

in the barriers, where () ' ⊥ for an uniform transverse electric field ⊥, and ∆ is the

band offset for conduction band. Band diagram for ACQW is shown in Fig. 1.

Figure 1. Conduction band diagram for

asymmetric coupled quantum well. Hori-

zontal thin lines show electron energy lev-

els and thin curves correspond to squared

wave functions close to the resonance.

The magnetic energy is described by c =  [̂ × p] +

 ̂, where ̂ is the Pauli matrix.

We define the Pauli splitting energy (half of the Zeeman splitting) caused by the magnetic field

as 

 = (2) Here  is the effective Landé factor,  is the Bohr magneton, and

 is the in plane magnetic field. We can take characteristic spin velocity for each layer as

 = ⊥~4, with  the well gap energy.

After some cumbersome algebra [3], we obtain the fundamental solutions of Eq (1):

Ψ+(p) =
©£
+(

+
p ) + +(

+
p )

¤
+ −(p)

£
−(

−
p ) + −(

−
p )

¤ª
(1
√
2)

Ψ−(p) =
©
+(p)

£
+(

+
p ) + +(

+
p )

¤
+
£
−(

−
p ) + −(

−
p )

¤ª
(1
√
2) (2)

where ±(p) = (± + 

)


, with ± =  ± , and 


 = [(̄

 + 

)

2 + ()
2]12.

In the above equation (
±
p ) and (

±
p ) are the Airy functions with arguments

±p =




⊥
+


±
p − + 


∆



⊥

 (3)

with  acting as a Kronecker function and 

⊥ =

¡
~22⊥

¢13
, 


⊥ = ~2[2

¡


⊥
¢2
],

and 
±
p = 


 ±|

|. Finally, ±, ± are unknown coefficients that we will obtain by means of
the boundary conditions, which include abrupt interface parameter  = (2⊥ +∆)2 ≈
∆2, where  is the halfwidth of that interface [4].

Now we generate transfer matrices, ( p) which include boundary conditions at

interface  To obtain electronic levels for each 2D momentum p = ( ) we introduce a

modification of the method used before [3]. The total transfer matrix can be written as:

 (p) = [ (1 p)]
−1 ·(1 p) · [(2 p)]

−1 · (2 p) ·
[ (3 p)]

−1 ·(3 p) · [(4 p)]
−1 · (4 p) (4)
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And the exact solution of the Hamiltonian is obtained from the Wronskyan-like:

 (p) = 11 (p) · 33 (p)− 31 (p) · 13 (p) = 0 (5)

Fig. 2 represents  (p), 11 (p) and 33 (p) versus  for a given momentum p.

Solutions of Eq. (1) correspond to their roots:  (p) has four roots for each p value,

corresponding to the two deepest coupled levels of the ACQW, and their respective spin down

and spin up sublevels. In order to identify spin orientation, we look for 11 (p) roots, which

correspond to the two coupled levels with spin up. On the other hand, 33 (p) roots indicate

spin down sublevels. Sweeping over a wide range of values of p we obtain dispersion relations

as four paraboloids.

Figure 2. Solutions of the transcendental

Eq. (5).  (p): red solid line. Spin

down solutions 33 (p): blue dashed line.

Spin up solutions 11 (p): green dotted

line.

Once energy and coefficients   (Eq. 2) have been obtained, we normalize wave

functions for each momentum p. Scheme of Fig. 1 includes the two resonant energy levels

and the respective wave functions for p = 0. Spin levels are indistinguishable in this figure.

3. Results

We present here numerical results for 053047 − 052048-based ACQWs [5] and

formed by two  wells of 50 and 100 Å wide separated by a 40 Å  barrier. We

have applied an electric field of 67 kV/cm to get resonance of the deepest conduction levels. We

have used a magnetic field of 05 T. We can find for this field an anticrossing between sublevels

spin down and up at each electronic level.

The four paraboloids corresponding to the two lower electronic levels after spin splitting

are represented in Fig. 3, where spin anticrossing is visible at the right of the two sets of

paraboloids. Spin anticrossing occurs around 0 = 30 for 0 = 0, where 0 = 
.

Note that paraboloids have not rotation symmetry because the magnetic energy 

p, which is an

essential part of the Airy functions argument, induces a breaking of the  momentum symmetry

and, as a consequence, the spin anticrossing.

In Fig. 4 we present a  = 0 section of the former figure where we can get a more accurate

2D description of the anticrossing  position and energy splitting.

Interestingly, interface contributions are opposite to the intrinsic spin-orbit effect. The

mechanisms contributing to mix Pauli contribution with the other kinds of spin-orbit

contributions (low magnetic field or interface effects) are different. As a consequence, numerical
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Figure 3. Energy versus  and . From

bottom to top: first level, spin down and

spin up, second level, spin down and spin

up.

Figure 4. Energy versus  for  = 0.

Solid line: spin down, dashed line: spin up.

calculations for  −  structures, subjected to very low in-plane magnetic fields,

lead to pronounced magnetoinduced changes in the energy dispersion relations, This effect is

particularly noticeable for spin anticrossings.

4. Conclusions

In this work we have presented an improved modification of the transfer matrix approximation.

So we have raised 4 × 4 matrices to include spin sublevels from the Pauli (Zeeman) splitting

caused by a magnetic field and the effect of abrupt interfaces. Although we have limited ourselves

to include these two contributions, the method is capable of handling any other contribution to

the spin splitting. We have applied the method to narrow-gap ACQWs under transverse electric

and in-plane magnetic fields. We have used non-symmetric contour conditions, caused by the

asymmetry of the structure, to solve the eigenvalue problem. The present version of the transfer

matrix, based on the Wronskian-like of wave functions space, has proven to be a highly efficient

and effective tool to study the physical properties of any layered material when subjected to

a wide range of perturbations. In particular, the method is especially useful in analyzing spin

peculiarities.
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