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Abstract. We consider the scattering of a non-relativistic particle by a symmetrical arrangement of two
identical barriers in one-dimension, with the barriers given by the well-known four-parameter family of
point interactions. We calculate the phase time and the stationary Salecker-Wigner-Peres clock time for the
particular cases of a double § and a double §’ barrier and investigate the off-resonance behavior of these
time scales in the limit of opaque barriers, addressing the question of emergence of the generalized Hartman
effect.

Quantum tunneling times have been extensively investigated in the last decades, leading
to several alternative definitions of transmission time (see [1] and references therein). A
phenomenon that attracted particular interest is the so-called Hartman effect [2], which
states that in the opaque limit (low probability of transmission) the tunneling time becomes
independent of the barrier width. In a generalized version of the Hartman effect the tunneling
time for a particle incident on a double-barrier potential also becomes independent of the inter-
barrier distance in the opaque limit [3, 4]. Due to their counterintuitive nature and consequent
conceptual difficulties, these effects have been investigated for a variety of tunneling times (phase
time, dwell time, Larmor time, etc.). However, most of these investigations are restricted to
rectangular barriers or (in the generalized case) double-d barriers — thus, it is important to
verify if such effects hold for other interactions, such as generalized point interactions.

Point interactions in one-dimensional quantum mechanics have been the source of significant
theoretical and mathematical interest for providing the opportunity to investigate advanced
tools such as regularization and renormalization, generally employed in quantum field theory, in
a simpler scenario (see, e.g., [5]). From the point of view of applications, point-like interactions
have long provided models of significant experimental relevance for lower dimensional systems in,
e.g., atomic physics. The most general point interaction in one-dimensional quantum mechanics
is given by a four-parameter family of interactions, as can be shown by either considering
self-adjoint extensions (SAE) of the kinetic energy operator (see, e.g., [6, 7, 8]) or by using
a distributional approach to the corresponding Schrodinger equation [9]. Recently this general
four-parameter family of interactions in one dimension has been used to investigate tunneling
times for a non-relativistic particle incident on a single scatterer [10].

In this work we calculate the phase and Salecker-Wigner-Peres (SWP) clock times for a
non-relativistic particle tunneling through a symmetrical arrangement of two identical potential
barriers given by the four-parameter generalized point interaction in one dimension (in this

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



IC-MSQUARE 2014 IOP Publishing
Journal of Physics: Conference Series 574 (2015) 012066 doi:10.1088/1742-6596/574/1/012066

case the SWP clock time is equivalent to the dwell time — see below). Our main interest is in
investigating the emergence of the generalized Hartman effect (GHE); thus we restrict ourselves
to the § and ¢ interactions and analyze the behavior of those times in the opaque limit. For the
double d-potential the stationary tunneling times have already been addressed in the literature
(see [11] and references therein), however, as we will see below it is worth revisiting the discussion
of the GHE for this potential.

Let us consider the scattering of a non-relativistic particle of mass p and energy E by two
identical point scatterers localized at z = 0 and z = L. The point interaction at position z can
be characterized by the boundary conditions (b.c.)

B(2)=AD(-), with B(z)= <$,<é))> , (1)
where 1)(z) indicates the wave function, ¢’(z) denotes its space derivative and ® (z1) =
lim,_,o+ ® (z £ €); A is the matrix

A:ei6<z 2), ad—bc=1, 6€[0,m), (2)

with a,b,c,d € R.

The four-parameter family of point interactions given by eq. (2) represents the most general
point interactions consistent with conservation of the probability current in one dimension, as
can be demonstrated by using a rigorous distributional approach to treat the corresponding
Schrédinger equation [9], or as obtained by the SAE approach [6, 7, 8]. The interaction (1)-(2)
includes the so-called ¢ and ¢’ interactions as well as other point interactions which do not have
a simple characterization.

We also assume that the particle is coupled to a SWP clock [12, 13] which only runs when
the particle is in the region (0, L). As is well known, the effect of the particle-clock coupling is to
introduce a small potential barrier of high V,, in the region (0, L) [13, 14]. Then, for incidence
from the left, the general solution of the time-independent Schrodinger equation can be written
as (omitting the dependence on V,,, for simplicity)

Pi(z) = et 4+ r(k)e_ikz : Y (z) = t(k)eikz , (3)

where 11 and 71 indicate the wave function in the regions z < 0 and z > L, respectively. In

(3) we defined k = (k,q), with k = +/2uF and ¢ = $+/2u(E — V) being the respective wave
numbers in regions I/IIT and IT (0 < z < L).
It is convenient to express the transmission and reflection coefficients as

t(k) = [¢(k)[ O and (k) = [r(k) et (O (4)

The phase transmission time for this system can be immediately calculated as tg(k) = ha% oi(k),
where the limit V,,, — 0 is implicit. Similarly, the phase reflection time is given by tﬁ(k) =

ha%%«(k)- We are also interested in the dwell time 7p(k) (see, e.g., [1] and references therein),
which can be obtained from the identity [14]

7 (k) = [t(k)[*Z (k) + |r (k) Pt (k) . ()

where tcT(R)(k) stands for the transmission (reflection) SWP clock time, which is given by
th (k) = —h [%gpt(k)]v (with a similar expression for the reflection SWP time).
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In this work we are interested in the case in which both the barriers are symmetric (which
implies that the whole potential is also symmetric). This corresponds to the restriction § = 0
and a = d in (2) [9, 15]. In this case, after imposing the b.c. (1)-(2) at z =0 and z = L and
taking into account the potential V,, in the region (0, L) due to the interaction of the particle
with the SWP clock, we obtain (from now on we use units such that 7 =2y = 1)

pi(k) = pr(k) — = = —tan™! {2a<

™ ¢ —bk?)g + [ + bPk2q% — a®(K? + ¢?)] tan(qL)} ©
5 .

2k [(a® + be)q + a(c — bg?) tan(qL)]

Thus, it follows from (5), and using conservation of probability, that for these kinds of symmetric
potential we have 7p (k) =t (k) = (k). It also follows that tg(k:) = tﬁ(k). Such result, which
holds for any symmetric regular potential, also holds for any symmetric arrangement of singular
point interactions (not necessarily identical). Now we restrict ourselves to the double § and
double ¢’ interactions and focus on the opaque limit, with the purpose of analyzing the GHE.

The double d-interaction. The (symmetric) double delta potential can be obtained by taking
a=d=1,b=0,c=and f =0, with  characterizing the strength of the interaction [8, 9, 15].
With these substitutions the phase time becomes

4KAL 4 3 + 2k2y(2 + Ly) — 73 cos(2k L) + 2k~y? sin(2kL)

ty(k)|, = 7
» ()]s k [8k* + 4k2~2 + 4% 4+ 42(4k2 — 42) cos(2k L) + 4k~3 sin(2kL)] Q

and the dwell/clock time can be shown to be [11]

B 2k [2k2L + v + L~y* — v cos(2kL)| — v*sin(2kL)
5 8k 4 4k242 4+ 44 4+ 42(4k2 — 42) cos(2kL) + 4kvy3sin(2kL)

te (k)] (8)
In the limit L — 0 the two barriers coincide at the origin and the above times reduce to the
ones obtained in reference [10] for a single point scatterer with strength 2-.

The opaque limit is characterized by very strong interactions, i.e., v > 1. It is straightforward
to show that in the extreme opaque limit, v — oo, both the off-resonance phase and dwell/clock
times vanish, regardless of L (assumed to be finite), and this is generally interpreted as indicating
the presence of the GHE — see [11] and references therein. However, in the extreme limit v — oo
there is absolutely no transmitted wave beyond the first barrier and the transmission phase
delay ¢; becomes meaningless (in fact, in this situation the delta barrier becomes impenetrable
[6, 9]). Accordingly, in this extreme limit the transmission phase and dwell/clock times cannot
be understood as traversal times (see [1, 14] for a similar discussion in the context of rectangular
barriers). Therefore, we follow the approach of reference [14] and investigate the opaque limit by
considering the asymptotic behavior of the tunneling times when ~ is very large, but still finite.
The leading contributions to the off-resonance phase and dwell/clock times are respectively
given by tg(k)}é = 71k and tcT(k:)‘(S = 7% [kLcsc?(kL) — cot(kL)], and we observe that for the
phase time it does not depend on the barrier separation L, while for the dwell/clock time
there is a dependence on L. Therefore, by taking into account only the leading contributions
to the transmission times in the opaque regime, when the probability of transmission is small
but non-vanishing, it appears that the transmission phase time presents the GHE, whereas the
dwell/clock time does not present such effect.

The double §'-interaction. We consider a (symmetric) double ¢’ interaction as obtained from
(1) and (2) by taking the parameters to be § =0, a =d =1, b =, ¢ = 0, with ~ giving the
strength of the interaction [8, 9, 15] (alternative, if less common, definitions for a ¢’-interaction
exist — see, e.g., [16]).
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The phase and the dwell/clock times are respectively given by

2024 K*9%) 4+ y(4 + k*4?) — kv? [k cos(2kL) + 2sin(2kL)] )
& k{8 + 4k2y2 + KAyt + k292 [(4 — k242) cos(2kL) — 4kvysin(2kL)]}’

ty (k)

B 2(2L + v + k2L~y?) — 27y cos(2kL) + kvy? sin(2kL)
& k{8 + 4k242 + kiyt + k292 [(4 — k242) cos(2kL) — 4kysin(2kL)]}

Similarly to the case of the double § barrier, in the extreme opaque limit v — oo both of
the above times converge to zero. But, again, in this extreme limit the interaction corresponds
to two impenetrable point barriers, and any quantity calculated in terms of transmitted waves
does not have physical meaning. Thus, here we also consider the asymptotic behavior of the
off-resonance times in the opaque regime, when ~ is very large but finite — still allowing a non-
vanishing probability of transmission. The leading contributions to the phase and dwell/clock
times are respectively given by tg(k:) 5 = ﬂ/—}gg and tI'(k) 5 = ﬁ [cot(kL) + kL csc?(kL)].
Again, in what concerns only the leading contributions to the off-resonance times in the opaque
limit, it seems that the GHE occurs for the phase time but not for the dwell/clock time.

It should be noticed, however, that for any finite interaction strength the next-to-leading
contribution to the off-resonance phase time (of order 1/92) does depend on the barrier
separation L for both the § and ¢ interactions'. That is, at the same order as the leading
contribution for the clock/dwell times, the phase times also present a slow growth with L for any
finite 7y (here, “slow growth” means that it still allows superluminal velocities). This indicates
that the GHE is just a mathematical consequence of taking the extreme opaque limit v — oo,
in which case any “transmission” time loses its physical meaning, as mentioned above.

te (k)

(10)
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LA detailed numerical study of the dependence of the tunneling times with L, as well as an investigation of
double-barrier point potentials more general than those considered in (6), will appear elsewhere.



