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Abstract. In this paper, Lorentzian wormholes with a phantom field and chiral matter fields
have been obtained. In addition, it is shown that for different values of the gravitational coupling
of the chiral fields, the wormhole geometry changes. Finally, the stability of the corresponding
wormholes is studied and it is shown that are unstable (eg. Ellis’s wormhole instability)

1. Introduction
A wormhole1 is a topological object of space-time which correspond to a shortcut through space-
time. Wormholes that could be crossed in both directions, are known as traversable wormholes.
Transversable wormholes introduced in [1], were obtained when a phantom field was coupled
to gravity. Their energy-momentum tensor would violate all (null, weak and strong) energy
conditions; while the phantom field is a scalar field with a reversed sign in front of its kinetic
term.

The action of the Einstein gravity coupled to a phantom field [2] and ordinary matter fields
is of the form

S =

∫ [
1

16πG
R+ Lph + Lch + Lsk

]√
−g d4x (1)

where R is the curvature scalar, G is the Newton’s constant and g is the determinant of the
metric. Also, the Lagrangian of the phantom field φ is

Lph =
1

2
∂µφ∂

µφ , (2)

and the non-linear sigma model Lagrangian is

Lch =
κ2

4
Tr {LµLµ} (3)

where Lµ = ∂µUU
† and κ is a coupling constant. The U is the chiral field which is a function

on the space-time manifold taking values in the Lie group SU(2). The last term in the action is
the Skyrme term defined as

Lsk =
1

32e2
Tr {FµνFµν} (4)

1 Based on a talk given by T. Ioannidou
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where Fµν = [Lµ, Lν ] and e a coupling constant.
The variation of the action with respect to the metric leads to the Einstein equations

Gµν = Rµν −
1

2
gµνR = 8πGTµν (5)

where the stress-energy tensor is

Tµν = gµνLM − 2
∂LM
∂gµν

. (6)

Note that LM = Lph + Lch + Lsk is the matter Lagrangian.
We consider static spherically symmetric wormhole solutions by assuming that

ds2 = −A2dt2 + dη2 +R2dΩ2 , (7)

where dΩ2 = dθ2 + sin2 θdϕ2 denotes the metric of the unit sphere, while A and R are functions
of η. Note that the coordinate η takes values in −∞ < η <∞. The limits η → ±∞ correspond
to the disjoint asymptotically flat regions.

In addition, the chiral field is taken to be of the form

U = cosF + i sinF ~e · ~τ , (8)

where ~e is the unit vector field

~e = (sin θ cosϕ, sin θ sinϕ, cos θ) , (9)

~τ is the Pauli matrices vector and F (η) is the profile function.
For simplicity, we introduce the dimensionless quantities

η =
η̃

κ
, R =

R̃

κ
, φ = κφ̃ , 4πG =

α

κ2
(10)

which is equivalent to κ = 1 and 4πG = α and we rename η̃ = η, R̃ = R, φ̃ = φ.

2. Wormhole Topology
In order, to obtain wormhole solutions, we assume that the function R does not possess any
zero. In particular, we assume that R behaves like |η| in the asymptotic regions and possesses
(at least) one minimum. Suppose R′(η0) = 0 for some η0 and R(η0) = r0. Then from the
equations of motion we get that

R′′(η0) =
1

r0

(
1− α sin2 F0

[
2 +

sin2 F0

e2r20

])
=

1

r0
(1− α/αcr) , (11)

where F0 = F (η0) and

αcr =
1

sin2 F0

[
2 + sin2 F0

e2r20

] . (12)

Therefore, R has a minimum at η0 if α < αcr and a maximum when α > αcr. The first case
corresponds to a wormhole since it describes a surface of minimal area which separates two
asymptotically flat regions. In the second case the maximum is a local maximum since in the
asymptotic regions R = |η|. This implies that there are two minima of R, one for η < η0 and
another for η > η0. For a sequence of alternating minima and maxima the corresponding spatial
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hyper-surfaces would also have two asymptotically flat regions divided by a throat. However,
the geometry of the throat would be more complicated.

For simplicity let us choose η0 = 0 which defines the position of the throat. In addition, we
impose the following conditions at the throat

R(0) = r0 , R′(0) = 0 , F (0) = F0 . (13)

The first choice correspond to the areal radius of the throat, and the second is the extremum
condition. The third choice fixes the value of the chiral profile function at the throat, which is
a free parameter. Let us consider the case where F0 = nπ/2, i.e. the wormholes are symmetric
under the interchange of the asymptotic regions.

Finally, the following boundary conditions are considered

A(η →∞)→ 1 , F (η →∞)→ 0 , F (η → −∞)→ nπ . (14)

which sets the time scale, and results from requiring finite energy and conserved topological
charge respectively.

Let us conclude, by identifying the topological charge of the solutions. Consider the chiral
field U as a map of spatial slices of the wormhole space-time to the group manifold SU(2) ∼ S3.
Since U takes constant values in both asymptotic regions the spatial slices become topologically
equivalent to a three dimensional sphere, where the north and south pole correspond to the
asymptotic regions η → +∞ and η → −∞, respectively. Thus the chiral field is a map between
two three-spheres, and the topological charge is defined as the degree of the map. Due to the the
chiral field ansäntz given by (8) and the above asymptotic boundary conditions for the profile
function F with n = 1 the corresponding topological charge of our solution is one.

The stability of wormholes is crucial for their physical relevance. It is known that the Ellis
wormhole possesses an unstable mode [3, 4]. Therefore, we investigate whether our solutions
possess the Ellis instability. However, in our work [2], we make a careful choice of the gauge
condition in order not to miss the unstable mode present in the Ellis wormhole. Unfortunately,
all our wormholes are Ellis unstable, as discussed in the next section.

3. Conclusion
Morris-Thorne wormholes threaded by chiral fields that carry a conserved topological charge
have been obtained. We consider static spherically symmetric solutions, which are symmetric
under an interchange of the two asymptotically flat universes with respect to the throat.

We observe that when the chiral fields are described by the NLS model, the gravitational
coupling constant α is the single free parameter. For small α the chiral fields have no influence
upon the wormhole geometry, and the throat is characterized by a single minimal surface. As
the gravitational coupling increases, the presence of the chiral fields influence the geometry of
the wormhole. At a critical coupling αcr, the throat becomes degenerate. Beyond αcr the throat
exhibits a set of three extrema, a (local) maximal surface and two minimal surfaces located
symmetrically, one on each side. Therefore, the wormhole geometry develops a belly in the
interior, which increases in size as α increases.

When the Skyrme term is added, another free parameter appears. Therefore, the gravitational
coupling and the throat size can vary independently. As before increasing α influence the matter
on the geometry of the throat, and the formation of an inner belly beyond a critical value αcr.
However, the splitting of the space-time into three parts is not as smooth as the NLS case, since
at the maximal coupling the asymptotically flat universes touch the inner universe.

Let us conclude by stating that the chiral fields cannot stabilize the wormhole space-time.
The instability of the Ellis solution is inherited by the wormholes threaded by chiral fields,
although they do carry a topological charge. According to our observations this is not surprising
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though, since, the topological charge may finally simply reside in a single of several disconnected
space-time parts.
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