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Abstract. Hysteresis loops of 3D ferromagnetic permalloy nano-half-balls (dots) with 100 nm 

base diameter have been examined by means of LLG micromagnetic simulations and finite 

element methods. Tests were carried out with two orthogonal directions of the externally 

applied field at 10 kA/(m.ns) field sweeping speed. The comparison of samples with different 

3D modifications at the sub-10nm scale, accessible by nowadays lithographic techniques, 

enables conclusions about different mechanisms of competition between demagnetizing and 

exchange fields. Design paradigms provided here can be applied, e.g., in bit-patterned media 

used as novel magnetic storage systems. 

1. Introduction 

Analysis of the microscopic structure of magnetic states plays an important role in understanding 

magnetic states in low dimensional objects, which is necessary for the development of nanostructures 

with novel features. Round objects, especially nano-dots, are of particular interest due their use in bit-

patterned media [1]. Observed in nano-dots and rings, flux-closure states, vortexes, and onion states 

were extensively investigated in many experimental works [2-6]. First experiments with thin magnetic 

films on non-magnetic spheres with diameters between 20 and 1000 nm underline the importance of 

probing 3D nano-magnets [7-8]. The 3D nano-objects can principally be structured with today’s 

techniques inspired by biologically self-assembled processes using proper (smart) components [9]. 

2. Mathematical Model 

The idea of the study presented here is based on the effect that for small magnetic elements the shape 

modifications – due to dipolar interactions – play a crucial role in magnetization dynamics; however, 

due to reduced dimensionality, the demagnetizing fields can compete with exchange fields leading to 

specific magnetic behavior, such as oscillations, rapid transient states, and quasi-static states. 

Thus, we theoretically examine 3D ferromagnetic half-balls made of commonly applied permalloy 

(Py) with different shape modifications in order to support development of new 3D performance 

paradigms. In our samples the circular base of diameter 100 nm is located in the x-y-plane. In some of 

the half-balls, a perpendicular hole of diameter 50 nm has been cut in order to extract the core region 

of a possible magnetic vortex state which is known to have a comparable diameter [10]. In that way 

the samples represent all basic shape features to be met in 3D-fabricated nanomagnets: planes, curved 

surfaces, straight and bent edges, as well as intentionally introduced cuts and holes. In order to narrow 
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the analysis to magnetostatic vs. exchange-based competition, magnetocrystalline anisotropy is 

excluded. All deviations from an ideal half-ball, created in different ways, can be seen in Fig. 1. 

 

 

Figure 1. The samples under simulation: (a), 

(b) and (e) are solid half-balls, while (c) and 

(d) half-balls possess a 50 nm diameter hole, 

respectively. The height of the half-ball (a) 

equals 50 nm. The cylindrical cuts in the x-y 

plane (b, d) have 50 nm diameter, and the 

maximum depth of a cut, seen along the half-

ball z-axis, equals 25 nm with respect to the 

top point of the bulk half-ball (a). Samples (e) 

and (f) possess arbitrary, asymmetrical cuts, 

and the elliptical hole in (f) case is not parallel 

to the z-axis. The surface x-components of 

magnetization, at zero-valued externally 

applied magnetic field, are color-coded. 

 

Here we report results of hysteretic behavior of the half-balls using micromagnetic simulations 

[11], allowing for an insight into the magnetic properties, basing on the Landau-Lifshitz-Gilbert 

(LLG) equation of motion 
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where J


 is the magnetic polarization vector, sJ  is the magnetization polarization at saturation,   is 

the electron gyromagnetic ratio,   is the damping parameter, and effH


 is the effective magnetic field. 

The effective field, in general, is a superposition of four contributing fields: the externally applied 

field, the magnetocrystalline field, the demagnetizing field, and the exchange field, namely 
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where 1K  is the magnetocrystalline anisotropy constant, n


 is the unit vector pointing in the magnetic 

easy-axis direction, and A  is the exchange constant.  

For the simulations, the MagPar [12] LLG micromagnetic solver was used, dynamically integrating 

the equation of motion. Finite elements were meshed as tetrahedral elements with dimensions of 

maximal 3.7 nm, which is smaller than the Py exchange length of 5.7 nm [11]. Near the edges, 

meshing was approximately 10 times denser, to include the influence of demagnetizing fields more 

exactly. Else, we chose the exchange constant A =1.05
.
10

-11
 J/m, the magnetic polarization at 

saturation sJ =1 T, and the Gilbert damping constant α = 0.01 [11].
 

3. Results and Discussion – Hysteresis Loops 

Hysteresis loops have been examined with the external magnetic field Hext applied along the x-axis (in 

the sample plane) and along the z-axis (perpendicular to the base plane), respectively. In all cases, 

starting from a random state of magnetization at Hext = 0, the field has been changed with constant 

speed of 10 kA/(m.ns) up to 450 kA/m (Hext along x-axis) or to 600 kA/m (Hext along z-axis), 

respectively (this step is not shown in the graphs for clarity). Next, starting from positive saturation, 

IC-MSQUARE 2014 IOP Publishing
Journal of Physics: Conference Series 574 (2015) 012054 doi:10.1088/1742-6596/574/1/012054

2



 

 

 

 

 

 

the field has been swept at a constant speed of -10 kA/(m.ns) to -450 kA/m (Hext along x-axis) or to 

-600 kA/m (Hext along z-axis), respectively. In order to close the hysteresis loops, the field has been 

swept back from negative to positive saturation with the same constant speed afterwards. This field 

sweeping speed is correlated to typical values for magneto-electronic applications [11]. 

 

3.1 Hysteresis loops for the in-plane applied field (x-direction) 

The hysteresis loops obtained for Hext applied along the x-axis are shown in Fig. 2. For the solid half-

ball (Fig. 2a), it should be mentioned that the start of the magnetization reversal before Hext = 0 is 

reached. Such a behavior has also been observed, e.g., by He et al. and interpreted as the beginning of 

a magnetic vortex state formation [6]. Our simulation strongly supports this interpretation, as can be 

seen in Fig. 2a where snapshots of the magnetization in z-direction are presented, showing vortex 

formations correlated with the start of the oscillations. A detailed analysis of the oscillation 

frequencies will be given in a future article.
 

While cutting the top of the solid half-ball suppresses magnetization reversal before Hext = 0 (Fig. 

2b), a hole in the sphere (Fig. 2c) significantly enhances the coercivity as well as the field region 

between first and second step of the complete magnetization reversal. This broad step is correlated 

with a flux-closed vortex state, while the saturation magnetization states and the oscillatory region are 

associated with two different onion states. The snapshots for the magnetization reversal from positive 

to negative saturation show the z-components of the magnetization. The oscillation here is not circular 

but a symmetric oscillation with the two colored domain walls oscillating towards each other and back 

again. Following the snapshots of the x-component of the magnetization from negative to positive 

saturation, the magnetization reversal from the original onion state along a second onion state to the 

vortex state and finally to the reversed saturated onion state is clearly visible. 

However, additional top cuts in a sphere with a hole (Fig. 2d) reduce the coercivity again, which is 

opposite to the finding in solid half-balls. Obviously, both effects have to be taken into account if a 

certain coercive field is desired. 

 

Figure 2. Hysteresis loops, 

simulated for the samples depicted in 

figure 1, for the external field 

applied along the x-axis. The color-

coded insets in (a) show the z-

component of the magnetization for 

different external fields, the insets in 

(c) exhibit the z-components (for 

field sweep from positive to negative 

values) and x-components (for field 

sweep from negative to positive 

saturation), respectively. 
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3.2 Hysteresis loops for the field applied perpendicular to a base-plane (z-direction) 

Figure 3 shows hysteresis loops for Hext applied along the z-axis. There are two types of reversal 

processes obtained, those with a step (Figs. 3a, 3b, and 3e) and those with smooth dynamics (Figs. 3c, 

3d, and 3f). The insets in Fig. 3a show that in the solid half-ball a vortex core is built [13], which is 

separated from the outer part of the vortex by a circular domain wall. During the magnetization 

reversal process, the core region becomes smaller, while the outer ring reverses. The oscillatory step 

finalizes the reversal by switching the core region. Both reversal processes from positive to negative 

saturation and vice versa differ by the orientation of the core and the outer region. 

 

Figure 3. Hysteresis loops, 

simulated for the samples depicted 

in figure 1, for the external field 

applied along the z-axis. The color-

coded insets in (a) and (c) show the 

z-component of the magnetization 

for different external fields. 

 

Apparently, the cylindrical cuts in the solid half-balls (Figs. 3b and 3e) lead to smaller coercivities 

and remanences, while the holes (Figs. 3c, 3d, and 3e) produce smooth reversible magnetization 

curves. Such a reversible magnetization curve of quasi-spherical Fe particles of diameter 200 nm has 

also been found by Diao et al. [14]. However, investigation of the magnetization dynamics [13] and 

the color-coded insets in Fig. 3c shows that here a flux-closed state is generated, corresponding to two 

possible states with flux rotational direction clockwise or counter-clockwise, enabling the utilization 

of these nano-magnets in storage devices as well. During the magnetization reversal process, the 

magnetization values as well as the color-coded snapshots are identical for all external fields; the 

process is completely reversible. 

Moreover, comparing Figs. 2 and 3, it is obvious that for the Py half-balls, the hard axis is always 

directed along the z-axis, as in 2D nano-magnets. 

 

All the observed effects can be more deeply understood by considering Fig. 4, where both competing 

fields are visualized. It can be recognized that an additional horizontal cut increases the in-plane (x-y) 

components of the demagnetizing field blocking the exchange field precessions. A more detailed 

examination of demagnetizing and exchange energy is given in [15]. 
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         a)       b) 

 
Figure 4. Visualizations of cross-sections of competing demagnetizing (dark lilac arrows) and 

exchange fields (light grey arrows) for the full solid sample (a) and the sample with a single 

horizontal cut (b). The colors at cross-sections represent local values of the Mz magnetization 

component: 1 (red) – vector parallel to z-axis, 0 (green) – vector perpendicular to z-axis, -1 (blue) – 

vector antiparallel to z-axis. The figure represents zero-valued external-field state (remanence). 

4. Conclusion 

In summary, we have provided some basic nanomagnetic sample 3D paradigms and given an 

overview about magnetization characteristics which can be reached by changes in the geometry of 

magnetic nano-particles, enabling deeper understanding of desired properties in a relatively broad 

range of modifications to meet the challenges of new 3D technology of magnetic devices. This could 

give an opportunity for new applications in magneto-electronics. 
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