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Abstract. We consider a N/ — § box system consisting of a rectangular conductor coupled to
a superconductor. The Green functions are constructed by solving the Bogoliubov-de Gennes
equations at each side of the interface, with the pairing potential described by a step-like
function. Taking into account the mismatch in the Fermi wave number and the effective masses
of the normal metal - superconductor and the tunnel barrier at the interface, we use the quantum
section method in order to find the exact energy Green function yielding accurate computed
eigenvalues and the density of states. Furthermore, this procedure allow us to analyze in detail
the nontrivial semiclassical limit and examine the range of applicability of the Bohr-Sommerfeld
quantization method.

1. Introduction

There is an increasing technological interest in the study of normal-conductor(N') ballistic
quantum dots attached to a superconductor(S), giving rise to the coherent scattering of electron
into holes and conversely at the superconductor-conductor interface. This peculiar phenomena
known as Andreev reflection is an important concept, necessary to understand the properties
of nanostructures with N'— § hybrid structures, commonly called Andreev billiards[1]. In this
direction, interesting experiments and theoretical works using graphene are still calling the
attention of the scientific community [2, 3] .

The N —S8 box system consists of a rectangular conductor N of height w and width a attached
to a superconductor §. The composed system is integrable and its density of states is gapless.
The Bogoliubov-de-Gennes (BdeG) equation describes the physics of the system, solved under
suitable boundary conditions enabling us to construct explicit Green functions at each side of
the junction, the latter defined as the quantum section, as shown in Figure 1.a. The quantum
section method is a tool useful to construct the full energy Green function, thus providing a
method to compute the quantum spectrum, and to properly derive the semiclassical limit[4]. In
section 2 we apply the quantum section method and obtain the energy Green function eigenvalue
condition. Next in section 3, we quantify the role of classical orbits. In section 4 we obtain an
expression for the density of states and discuss its leading order approximation. Finally, our
conclusions are presented in section 5.
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2. The N — S Box System

Let us consider the BdeG equation: ( Hi o ) U = &V  where H, = % —E&r. Pis

AN* —H,

the particle momentum, M its mass and the chemical potential at any region is defined as equal
to Sé\gf for the N region and equal to Ej‘i for the S region. In order to set up the wave functions, we
construct the wave functions as a single layer potential density over the quantum section. Thus,
considering x,(z2) an eigenmode function along the section the integral [s fimXxm(2/2)dzot is

always a constant. The prescription | A | = 0 is imposed inside the normal region A/ and the
wave function is written as:
1 0
W= 5, e (o ) g nan) +dl () G @) ). )

Similarly, for the superconductor region S, &€ <| A |# 0 and

o= %, [c,a,<”f)ga3<x1,x~1>+c’;w<”fl)gﬁf(xl,xul)] Xm(@2) . (2)
V2 V2

The choice xm(z2) = \/g sin (" x2) satisfies Dirichlet boundary condition along z; for

x9 =0 and w. Next, wave functions above ( Eqgs. (1)-(2) ) are substituted into the BdeG
equation to find the appropriated horizontal Green-mode function. Inside the N-region, for

the m-mode we define ICJ}/ = \/QMWMS%/ and by exchanging £/ — & — %(M)Q, we write

w
for electrons (e) {8% + %42& (5'%[ +& /)} GeN | similarly for holes (h) exchanging £/ — — &1

To satisfy Dirichlet’s boundary conditions along the vertical axis at z =a, we choose
e(h) . . ] 2
gfrgh)N(x,a:/) = k:e%h) ettkm™ (a—2/) gip k,eqq(,h) (a — x) with kf;g}) = ICf}f\/l + 5% — (%) . Here,
F F

we can observe that these scattering functions describe two classical paths: a short path
around the neighborhood of the section (from 2/ to x). The other path is longer (2a), since
it now leaves the section and bounces at the boundary of the conductor (x = a) and then
goes back to the neighborhood of the section. Observe also that electrons and holes travel
opposite classical paths, this classical picture will be of paramount importance later when
we derive the semiclassical limit. Then we consider the superconductor region and similarly
we test gﬁg,h)s(x,x//) = e%h) e¢zqz§7>($_“”)
q

m/

, where amplitude damping results in quasi-short-

path contributions, from the semiclassical point of view. Setting up Ky = Kff\/l;:fé,h)s and
K3 = \/2%5}9_-, for the m/—eigenmode, we now have
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nasar - (-or-ke) | Lo N Al I -

(3)
To find solutions for 7.y, we compute the secular equation yielding (with |ye)| = 1/ V2):

~ 2 (€ 7.e mm 2
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Qs = \/( ) + keSkhS| q¢ = arctan | >—Z—+% tan £ g = arctan ﬁtanQ — .
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Defining A = %@5 and Z = 2M¥ U, we now search for eigenvalues imposing the continuity of
the wave function and a step-like discontinuity of the wave function derivative, at the section,

[\IJN - \Ifﬂz -0 , [ax (\IIN - ws) - Z\IIS(M}Z =0. (5)
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With a7 = a1/ = 0 on the section, we obtain the energy Green function G,,(£) imposing that
at the eigenenergy:

1
(mig@m) = =3 /2<m\y> e Dion Dhtis = i it D] (wlmr) dy = 0. (6)
mm/
g G

Since [ (m|za)(wa|m/)dag = Oy, with D22 = det ; for = (e, h)

GaNT (2685 +2GE5))
and S = (e, h). The next step consists to rewrite the energy Green function in terms of the
scattering matrix. We will see that this strategy is useful when searching for a semiclassical
description.

3. The Classical Orbits

We define P, = 22/\;(811%3 ze zh erlkmatlznt2n]=0) [cos (k-a) — cos (kha)] with kT = ke, F k|

2" = arctan { (Ea52 ) tan J (@) + § — (1)m)}, 267 = /22 4T3, + 22D cos S(ai™ + 4§ — (+)m),

m''m m

Ky = kS ED, Ty = ACS4/QS,, and rewrite Eq. (6) as a function of the scattering matrix’s
terms of reflection (7, 7, ) and transmission(t,, t,,) [5]

gm(g) = Pmdetu - Sm| = [Pm — Pm (Tm + fm) + Pt Tm — ,Pmtmfm] 5 (7)

yielding rp ") = arctan [(%) tan 6} , R = \/[kfnP + [kh]? — (+)2 Ky, cos 26,
(FWR;}H cos (X[a%—a%]+rm ) —Z kb sin 9)

dT_)’L(+) ) tanQ ’wj_n(_) = Zk‘;tl(_) sin@,

= arctan 2

(Fm’R;(ﬂ cos (%[qﬁn—qfn]—i-r;(ﬂ)—i-z k) sing

m

2 2
Zn® = T R cos (Lah, — q5] + ™), Dot P = \/ (w#‘)) 4 (E;}”) 12w = cosh,

—Pum (rm + Tm) = z% {D;1 et (kmatdn=30) gip (k+a) — D et kmatdn—30) i (k;ba)} :
P T Tm — Pmtmtm = 17)‘; 151510 ekma=29) [cos (k- a) + cos (kia)] .

Here we found that the scattering reflection contributions are diminished by the scattering
transmission contributions, taking account of the quantum capability of the wave function to
tunnel.

4. Leading order approximations
We consider all the eigenmode contributions to compute the density of states,

p€) = =13 Gn(E) = -1y j;j*;zm { @1 cos (20 + O1,,) — oy, cos (2k,a — 20 — Oy

s

8
— Dy cos ([k, — kf]a —20 — Ozp,) + Py, cos ([k,, + kL ]a — 20 — Oy} . ®)

We now analyze the phase of the respective contributions in the above expression. Even the
short trajectory is affected by quantum tunneling, the phase 26 appears in all contributing
terms in p(£). The second term is a long trajectory which is influenced by Andreev

retroreflections 2k, a (: 2[kE, — k] a), where both electron and hole particles travel the same

length (2a) in opposite directions while bouncing inside the conductor, see Figure 1.b. The
last two terms are influenced by Andreed retroreflections and specular-reflections represented
by kla (: [k, + kI a), respectively. In particular, the third term considers contributions
of two bouncing electrons traveling the same length a; one in a clockwise and another in a
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counterclockwise fashion. Meanwhile the hole travels twice the width of the conductor, it is
shown in Figure 1.c. Exchanging electron by hole the physical scenario presented before can be
applied to the fourth term, as depicted in Figure 1.d. We find that every phase contribution is
also affected by a term 0, taking into account the fact that the waves functions can go further
into the superconductor region. In fact this is a correction applied to the usual tunneling term
0, since it depends on it and the superconductor material physical parameters. Finally, the
amplitudes @, are related to the particle’s path length distribution[3, 6, 7],

Aiming at a better understanding of the semiclassical framework, we make the following
Ag:m sin 6 BE A/c‘f}s_-

S

o, SN0 .
T cos (0-aT) BT con(0—FT) <1 and Z< o5 > < 1, and obtain

approximations: <1,

AF, ~ (D) + (Zhn 7202, 5020)°, A3,
Bfm ~ \/(ka;f + (Zk;ﬁ F 22, sin® 9)2, Bzim ~ Dk, cosf+ [(an + 22) cos 20 — Km] )
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Lkt cos £ [(T2, + 22) cos 20 + K,y .
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Dy, ~ Aj,, cos (0 — ay,,), Pom ~ Al cos (0 — &), @3 ~ By, cos (0 — B1,,), Pam =~ B cos (6 — ;).

A} sin6 A sind By sind B, sin6
©1m & arccos (27” ,©op, & arccos [ Z22"—— ), O3 & arccos [ 22— |, O ~ arccos 2(}7?7 .
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In the strong limit £ << £z, the phases and the amplitudes are approximately equal and the net
contribution of the mixture of Andreev retroreflection and specular reflection are negligible, thus
retroreflection constitute the most important contribution, and so the Bohr-Sommerfeld (BS) formula
quantization rule becomes 2 (k¢, — k") a — 26 — ©g,, = (2n — 1)7, with m, n integers. The Oy, term is
not present in the BS expression obtained in reference[6], where both the mass of the particles and the
Fermi energy of the N’ — S system are considered indistinguishable and clean.

5. Conclusions

We presented a full quantum theory for the A/ — S system via the quantum section method. It enable
us to properly obtain the semiclassical limit. In general, both Andreev retroreflection and Andreev
specular reflections determine the spectrum of the system. Our formulation enable us to analyze the B-S
quantization method. We found that in the strong limit £ << £ the BS formula applies, including the
extra term Og,,. Numerical work in progress may corroborate Cserti et al.[6] conjecture, namely: third
and fourth contributions in equation (8) cancel each other in the semiclassical limit.
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Figure 1. a) The Andreev billiard composed of two rectangular regions, one conducting
and the another superconducting. The quantum section Y is defined over the junction at
xz1 = 0. Different phase contributions of an electron (blue-line) and hole (red-line) into the
Andreev billiard. Andreev retroreflections is depicted in b). In c), two electrons traveling in
clockwise and counterclockwise directions and one hole. In d), two holes traveling in clockwise
and counterclockwise directions and one electron. These two contributions are interpreted
as a superposition of Andreev retroreflection (k¢, — k") and specular reflections (k¢, + k%),
respectively.



