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Universidad Politécnica de Madrid, E-28040 Madrid, Spain

E-mail: jose.gaite@upm.es

Abstract. The current cold dark matter cosmological model explains the large scale cosmic
web structure but is challenged by the observation of a relatively smooth distribution of matter
in galactic clusters. We consider various aspects of modeling the dark matter around galaxies
as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen
in N-body cosmological simulations. We conclude that the problems of the cold dark matter
cosmology on small scales are more serious than normally admitted.

1. Introduction

Cold dark matter, which consists of weakly interacting particles whose velocity dispersion in the
early universe was not sufficient to prevent the formation of structure on galactic and sub-galactic
scales, is fundamental in modern cosmology, since the early 1980s. Naturally, the full standard
cosmological model, namely, the ΛCDM model, presently includes a cosmological constant and
inflationary initial conditions. However, just the cold dark matter (CDM) hypothesis, with the
consequent richness of structure on very small scales, does not fit well the indirect observations
of dark matter. To be precise, the results of N -body simulations of the evolution of collisionless
CDM show that too much structure is produced on galactic scales. This excess of small-scale
structure manifests itself in two problems: the core-cusp problem [1] and the missing satellites
problem (or dwarf galaxy problem) [2, 3].

Observations of galactic rotation velocities seem to indicate an approximately constant dark
matter density in the inner parts of galaxies, whereas cosmological N -body simulations indicate
that the dark matter radial density profile has a singularity of power-law type. This discrepancy
has been named “the core-cusp problem”. It is illustrated in Fig. 1, which shows the results of
Kuzio de Naray et al [4] for a particular galaxy (F568-3): the points with error bars are rotation
velocity measurements and are well fitted by the solid curve, which corresponds to an isothermal
dark matter halo with a constant density core. In contrast, the dashed curve, corresponding to a
Navarro-Frenk-White (NFW) singular density profile, clearly overpredicts the rotation velocity
near the center. Any other power-law like profile would also induce too high rotation velocities
near the center.

The “missing satellites” problem refers to the appearance of a large number of subhalos
(satellites) close to every single halo in cosmological N -body simulations, without observational
counterparts. Put in other words, the number of dwarf satellite galaxies around a normal-sized
galaxy is much smaller than the number predicted by collisionless CDM N -body simulations.
For example, only about 11 dwarf galaxies orbiting the Milky Way have been observed, whereas
the number of dark matter subhalos produced in, for example, the “Via Lactea” cosmological
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Figure 1. Measured rotation curve of a galaxy
(points with error bars) compared to model fits
assuming a cored dark matter halo (solid curve)
or a cuspy dark matter halo with an NFW profile
(dashed curve). The dotted curve shows the
contribution of baryons (stars+gas). From Kuzio
de Naray et al.

Figure 2. The dark matter
distribution from the “Via Lactea
II” cosmological simulation of
a Milky Way-mass cold dark
matter halo, from Diemand et al.
(http://www.ics.uzh.ch/∼diemand/vl).
The cube has a size of 800 kpc.

simulation of a Milky Way-mass cold dark matter halo is much larger (the simulation has been
made by Diemand et al [3]). This is easily perceived in Fig. 2. Naturally, this problem is intrinsic
to the CDM model, since cold dark matter clusters hierarchically from the smallest scales (from
the bottom up). If dark matter is composed of neutralinos, as is likely, the smallest clumps of
dark matter can range from 10−11 M⊙ to 10−3 M⊙ [5].

Both problems suggest that the real dark matter distribution, on small scales, is smoother
than the one produced by collisionless CDM N -body simulations: the real distribution is less
grainy and has no density singularities. On the other hand, on medium or large scales, the
results of N -body simulations agree with observations: the large scale structure of the Universe
is arranged as a “cosmic web” constituted by matter sheets, filaments, and nodes, plus the
cosmic voids that these objects leave in between. This type of structure was initially proposed
in connection with a simplified model of the cosmic dynamics, namely, the adhesion model [6],
and both galaxy surveys and cosmological N -body simulations have confirmed it.

On scales smaller than those corresponding to the cosmic-web structure in N -body
simulations, the dark matter distribution transforms into a distribution of relatively smooth dark
matter clusters or halos that have a limited range of sizes. These dark matter halos are to be
identified with the ones surrounding galaxies, detected by rotation velocity measurements. Halo
models of the large scale structure of matter [7] have become very popular. The distribution of
dark matter inside an N -body halo is smooth, save for a concentration at its center, presumably
constituting a density singularity, and for the presence of subhalos close to it. The existence of
a density singularity and of an excess of subhalos are the already mentioned problems of the
CDM model on small scales.

Although the existence of smooth halos is rarely questioned, they really are not part of the
CDM model. In fact, their presence in N -body simulations can be a consequence of numerical
artifacts [8]. From a theoretical viewpoint, the continuum CDM dynamics is ruled by the
Vlasov-Poisson equations, which give rise to the same type of gravitational clustering on ever
decreasing scales. Therefore, assuming that the cosmic web geometry is the attractor solution of
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those equations, there is no reason why this solution should become relatively smooth from some
galactic or super-galactic scale downwards. On the contrary, it would be natural that the cosmic
web structure in collisionless N -body simulations were a self-similar multifractal, displaying the
same features, namely, sheets, filaments, nodes, and cosmic voids, on ever decreasing scales,
down to the scale of the smallest dark matter clumps (with mass ≪ M⊙). For example, the
cosmic web produced by the adhesion model [6] is of that type [9].

With the above in mind, we study the smoothness of halos in CDM N -body simulations, to
determine the range of scales where the distribution of matter is smooth and the connection
of halos with the non-smooth cosmic web structure [10]. We also consider how the abundance
of halos depends on the mass resolution and on the discreteness parameters pertaining to N
bodies. Our conclusions question the consistency of the CDM-halo model with observations
much more seriously than the well-known problems, namely, the core-cusp problem and the
missing satellites problem.

2. Smoothness of halos in N-body simulations

A dark matter halo consists of a spherical like distribution of dark matter particles with a density
that is generally smooth but singular at the center [7]. Most models of formation of halos are
motivated by the spherical collapse model and its variants. Naturally, in a halo, smoothness and
isotropy tend to diminish away from the center. If we imagine a spherical surface with origin
on the halo center and with increasing radius, initially the dark matter distribution over the
surface is mildly anisotropic (triaxial) but, as the radius increases, the anisotropy increases and,
eventually, the spherical surface intersects a distribution that is essentially indistinguishable
from a non-smooth cosmic web structure.

To measure anisotropy and non-smoothness, we need to define them in mathematical terms
[10]. In mathematics, a function is smooth if it has an infinite number of derivatives. However,
we cannot just use derivatives of the density field, on account of the density singularities at
halo centers. Therefore, a more useful distinguishing feature is the change from mild to strong
anisotropy on increasing scales: on small scales, namely, close to halo centers, the anisotropy is
caused by triaxiality and, possibly, subhalos, whereas, on larger scales, the anisotropy patterns
are much more complex. If we consider a spherical shell centered on a halo, the density in it
must be fairly smooth for a small radius (except for subhalo singularities), but the density must
become increasingly non-smooth as the radius grows.

To find how uniform a distribution of k particles in a spherical shell is, we can compare the
angular spherical coordinates of the particles, {φi, θi}

k
i=1, with the coordinates corresponding to

a uniform distribution of the particles. To do this, we must consider that the variables that must
be uniformly distributed are not φ and θ but φ and cos θ. For convenience, we define coordinates
φ/(2π) and (1 + cos θ)/2 over the unit square [0, 1]× [0, 1], corresponding to a cylindrical equal-
area projection on it. To analyze if the particles are uniformly distributed, we can use the Rényi
entropies

Sq({pi}) =
log2(

∑M
i=1 pi

q)

1 − q
, q 6= 1 , (1)

where {pi = ni/N}M
i=1, with N =

∑M
i=1 ni , and {ni}

M
i=1 are the counts-in-cells corresponding

to the distribution of N particles in M spherical cells (set in the given coordinates). The limit
of Sq as q → 1 yields the standard Boltzmann-Gibbs-Shannon entropy. The Rényi entropies
with q ≥ 0 fulfill 0 ≤ Sq({pi}) ≤ log2 M , so we divide them by log2 M to obtain numbers
between 0 and 1: zero corresponds to maximum order (or dispersion of counts-in-cells) and one
to minimum order. The entropic coefficients Sq({pi})/ log2 M are just coarse Rényi dimensions
divided by the dimension of the ambient space, which is, in the present case, a two-dimensional
spherical surface.
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When we observe how the q ≥ 1 entropic coefficients of a shell in a given halo change with the
radius of the shell, we expect that they start at values close to one and have a generally decreasing
trend, in accord with the transition from small-scale smoothness to large-scale graininess.

2.1. Halos in the Bolshoi and Via Lactea II simulations

The Bolshoi simulation [11] assumes cosmological parameters ΩΛ = 0.73, ΩM = 0.27, Hubble
parameter h = 0.70, and initial spectral index n = 0.95, while the “Via Lactea II” (VL2)
simulation [3] takes ΩΛ = 0.76, ΩM = 0.24, Hubble parameter h = 0.73, and initial spectral
index n = 0.95. The comoving size of the simulation boxes are 250 h−1 Mpc and 40 h−1

Mpc, respectively. The number of Bolshoi particles is N = 20483, yielding a mass resolution
of 1.35 · 108 h−1 M⊙. The VL2 simulation focuses on the formation of a single, Milky-Way size
CDM halo, using the method of refinement. The VL2 dark matter halo is refined with more
than 109 high-resolution particles, yielding a mass resolution of 4098 M⊙.

Our procedure consists in adjusting spherical shells to have 1024 particles and then setting a
8×8 mesh in the unit square corresponding to every shell (in our coordinates), obtaining M = 64
cells per shell. Since subhalo singularities strongly affect smoothness measures, we avoid them
by removing the four most populated cells of every shell, reducing M to 60. This operation
hardly alters the overall smoothness properties. In consequence, the entropic coefficients are
given by Sq/ log2 60 = Sq/5.9. The variation of the q = 1 and q = 2 coefficients with radius for
two Bolshoi halos, on the one hand, and the VL2 halo, on the other, are plotted in Fig. 3 and
Fig. 4, respectively.
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Figure 3. Smoothness measured by two
Rényi entropies in two Bolshoi halos, showing
the decrease with radius (in h−1 Mpc).
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Figure 4. The variation with radius of
the same two Rényi entropies in the “Via
Lactea II” halo. The radius is measured in
kpc.

We see in all the plots the progressive decrease of smoothness with increasing radius, from
values close to one to values that approximately tend to the asymptotic values corresponding
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to the multifractal cosmic-web structure, namely, 0.8 and 0.6, for q = 1 and q = 2, respectively
[12, 13]. The considerable fluctuations superposed on the decreasing trend are due to subhalos,
whose effect is not totally eliminated in our procedure. Remarkably, nothing special happens at
the virial radius.

2.2. Subhalo abundance

The excellent mass resolution of the VL2 simulation reflects on the large number of subhalos,
easily perceived in Fig. 2. Actually, there are more than 9000 subhalos within the virial radius
of the Milky Way VL2 halo; or a few thousands, at any rate, if we suitably restrict the minimal
halo size. In contrast, the halos in the Bolshoi simulation contain much fewer subhalos. For
example, the Bolshoi simulation halo with rvir = 0.56 Mpc/h and whose entropies are plotted
at the bottom of Fig. 3 contains only 22 subhalos within the virial radius (with more than 50
particles each).

This remarkable difference is a consequence of the different mass resolution of both
simulations: the particle mass ratio between the two simulations is 33000, approximately. An
improved resolution must bring out unresolved substructure. Presumably, as suggested by
Diemand et al [3], “at infinite resolution one would find a long nested series of halos within
halos within halos etc.”

However, a ratio of 33000 is considerably larger than the ratio between the numbers of
subhalos of the respective halos. In fact, the definitions of subhalo in the two simulations do
not coincide, but this is only a part of the cause for the discrepancy: the influence of the gravity
softening on smoothness properties must be taken into account as well. We discuss both the
discreteness parameters next.

3. Influence of discreteness on smoothness

The nature of halos and, in particular, their smoothness are influenced by the discreteness
parameters, namely, total number of particles N and softening length ǫ. The optimal choice of
softening is still a debated issue [14, 15]. In a CDM simulation with N particles that produces
objects of size R, namely, halos of size R, the optimal softening length ǫ has to be determined
in terms of N and R. Here, R is the average radius of halos, for a given simulation, where
the radius of an individual halo is defined as its smoothness radius, in accord to the preceding
section. Since the size of the simulation box L and, hence, the total number of particles N ,
must not have any effect on the nature and size of individual halos, we can express the softening
length in terms of local quantities, namely, the discretization length, ℓ = LN−1/3, and R. In
principle, the function ǫ(ℓ, R) can be arbitrary. Besides, considering that ℓ and ǫ are discreteness
parameters, fixed at the start of the cosmological simulation, whereas the sizes of halos belong
to the result of the simulation, it is preferable to write the relation among the three quantities
as R(ℓ, ǫ).

The evidence suggests that the function R(ℓ, ǫ) greatly depends on the variables ℓ and ǫ
[8]. In this regard, we would like to know the separate dependence of R on ℓ and ǫ. While a
finite ℓ (a finite N) introduces corrections to the mean-field Vlasov-Poisson dynamics, partially
remedied by the gravity softening, this softening also perturbs the Vlasov-Poisson dynamics.
Joyce et al [15] point out that the rigorous Vlasov-Poisson limit, ℓ → 0, is to be taken at fixed

finite ǫ, obtaining a smoothed version of the Vlasov-Poisson equations. One may ask what
limℓ→0 R(ℓ, ǫ) is: dimensional analysis demands that limℓ→0 R(ℓ, ǫ) ∼ ǫ. In words, the softening
on a scale ǫ must produce a smoothing on the same scale. Therefore, if halo sizes are determined
by smoothness, these sizes must be of the order of ǫ. The subsequent ǫ → 0 limit that leads to
the actual Vlasov-Poisson equations makes the halo sizes vanish and the halo number density
diverge. This implies that the relevant solutions of these equations correspond to a self-similar
cosmic web structure that is present on ever decreasing scales. Naturally, the limit ℓ → 0 at
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fixed finite ǫ or, in other words, the domain of discreteness parameters such that ǫ ≫ ℓ, is not
studied by cosmological N -body simulations. Nevertheless, its effect on halos can be understood
by analogy with the adhesion model [9].

4. Conclusions

The often mentioned problems of the CDM model on small scales, namely, the core-cusp problem
and the missing satellites problem, reflect just the bottom-up formation of structure in the CDM
model, which necessarily gives rise to a considerable amount of structure on galactic scales. The
amount of structure produced on small scales is usually inferred from the results of collisionless
CDM N -body simulations, which actually show that the distribution of matter on those scales
can be described as a distribution of smooth halos with a limited range of sizes. The core-
cusp problem arises because the halos in simulations are singular at the center, whereas the
observations of galactic rotation velocities are better fitted by totally smooth halos, namely,
with soft cores. The missing satellites problem arises because there are too many small halos
and subhalos in simulations. In summary, the dark matter distribution on small scales in N -
body simulations is a distribution of halos, which are relatively smooth but not as smooth as
required by indirect observations of the dark matter distribution.

However, as we have seen in this paper, the existence of halos in the cosmic web is surely an
aspect of the small-scale smoothening produced by N -body discreteness effects. Our analysis of
the smoothness and abundance of halos corroborates this conclusion. The analysis of smoothness
is based on the application of robust entropic measures to halos in two recent CDM N -body
simulations with different resolutions, finding a progressive and essentially monotonic growth
of halo graininess or anisotropy with radius, which stops at some radius, for every halo. The
radius at which the limit graininess or anisotropy are attained can be defined as the final end of
the smooth halo and the beginning of the cosmic web structure, which merge seamlessly. The
removal of discreteness parameters should make all the smoothness radii vanish and therefore
remove the halos and their relative smoothness altogether. This makes the problems of the CDM
hypothesis on small scales somewhat different and much more serious than they are currently
known to be.
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