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Abstract.

The real-space dynamics and the nonlinear interactions among Fourier modes in elastic wave
turbulence are investigated by simulating the Föppl-von Kármán equation. We find that the
bundle structures of ridges appear intermittently in the time evolution of the stretching energy
field. The time-evolution of the nonlinearity indicates the existence of active and moderate
phases in turbulent state. Conditional sampling analysis reveals that the bundle structure,
which is the embodiment of the strong nonlinear interactions among modes, induces the energy
supply from an external force to the system.

1. Introduction

Elastic wave turbulence, which is governed by the Föppl-von Kármán (FvK) equation [1],
has been studied theoretically, numerically and experimentally, and exhibited rich phenomena.
Various energy spectra in statistically steady states have been reported. While the energy
spectrum E(k) ∝ k[log(k∗/k)]

1/3 predicted by the weak turbulence theory (WTT) is successfully
reproduced by simulating the FvK equation in the pioneering work [2], the experiments in [3, 4]
show different powers of energy spectra E(k) ∝ k0 ∼ k−0.2, where E(k) is an azimuthally-
integrated spectrum and k = (k2x + k2y)

1/2. The dimensional analysis suggests other powers of

energy spectrum: E(k) ∝ k−1 for energy cascade and E(k) ∝ k−1/3 for wave action cascade.
In our previous works [5, 7], we have systematically reproduced the variability of the energy

spectra by changing the magnitudes of external forces. We have also found the coexistence of the
weak and strong turbulence spectra which exists universally for sufficiently wide inertial range.
The analytical expression of the separation wavenumber between them has been proposed and
numerically validated for various values of parameters. Recently in Ref. [8], we analyzed energy
budget by using energy decomposition that is enabled by a single-wavenumber representation
of nonlinear energy spectrum. All the above analyses were done in the Fourier space.

We will report here the properties of elastic wave turbulence in the real space. Examined are
the real-space structures and the probability density functions of the decomposed energies in
addition to the lateral displacement of a plate. We also performed conditional sampling analysis
to distinguish active and moderate phases in turbulent state, which reveals the relation between
the bundle structure in the real space and the nonlinear interactions among Fourier modes.
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2. Formulation

2.1. Basic equations

To investigate the dynamics of elastic waves, we numerically solved the FvK equation

∂p

∂t
= −

Eh2

12(1 − σ2)
∆2ζ + {ζ, χ} ,

∂ζ

∂t
=

p

ρ
, ∆2χ = −

E

2
{ζ, ζ} , (1)

where η, p and χ are respectively the lateral displacement, the momentum and the Airy stress
potential. The Young’s modulus E, the Poisson ratio σ and the density ρ are the physical
properties of the elastic plate. The thickness of the plate is expressed by h, and ∆ = ∂xx + ∂yy
and {f, g} = ∂xxf∂yyg+∂yyf∂xxg−2∂xyf∂xyg are the Laplace operator and the Monge-Ampère
operator, respectively. We adopted the parameter values of the steel plate used in the experiment
which are shown in Ref. [3].

The pseudo-spectral method is employed, since the plate is supposed to have the periodic
boundary of 1m×1m. The number of the aliasing-free modes is 256×256, though 512×512 mode
is used in the calculation of the convolution. The fourth-order Runge-Kutta method is used for
the time integration. The external force and the dissipation, which are respectively localized in
low-, k ≤ 8π, and high-, k & 256π, wavenumber ranges, are added to achieve statistically-steady
non-equilibrium states. The details of the numerical method are explained in Ref. [5].

2.2. Energy decomposition

The energy decomposition is convenient to investigate the energy budget in detail as pointed out
in our recent manuscript [8]. The decomposed energies are the kinetic energy K, the bending
energy Vb and the stretching energy Vs:

K =
p2

2ρ
, Vb =

Eh2
(

(∆ζ)2 − (1− ν){ζ, ζ}
)

24(1 − ν2)
, Vs =

(∆χ)2 − (1 + ν){χ, χ}

2E
. (2)

Fourier spectral representation is suitable for the analysis of homogeneous turbulence. We here
introduce the Fourier coefficients of ζ, p and χ as ζk, pk and χk respectively. Adoption of ζk, pk
and χk as elementary waves enables the single-wavenumber representations of these decomposed
energies under the periodic boundary condition:

Kk =
|pk|

2

2ρ
, Vbk =

ρω2

k
|ζk|

2

2
, Vsk =

k4|χk|
2

2E
, (3)

where the frequency ωk is determined by the linear dispersion relation. We here categorize
the former two energies (latter one energy) as linear (nonlinear) energy, since their (its) order
of complex amplitudes is quadratic (quartic). Note that adoption of complex amplitudes as
elementary waves makes nonlinear energies the convolution of four waves as known in WTT.

3. Numerical Results

3.1. Energy spectra and real-space structures

In Fig. 1 shown are the ensemble averaged azimuthally-integrated spectra of the total energy E ,
the kinetic energy K, the potential energy V, the bending energy Vb, the stretching energy Vs,
and the linear energy EL = K + Vb. Here, the total energy is decomposed as E = K + Vb + Vs.
(See Ref. [8] for details.) Note that the potential energy at each wavenumber V is decomposed
into linear part, Vb, and nonlinear part, Vs, as V = Vb + Vs, and the former (latter) takes large
values in low- (high-)wavenumber range. The kinetic energy spectrum has flexion downward
around k ≈ 200. As a result, E as well as EL consists of two types of power law spectra with
positive and negative exponents.
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Figure 1. Azimuthally-integrated spectra of
total and decomposed energies.
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Figure 2. Field of lateral displacement.

Fig. 2 shows the real-space field of the lateral displacement ζ, whose structure has relatively
large-scale. One might think that the field structure of ζ contradicts to Vb in Fig. 1, since the
Fourier coefficient of the displacement ζk, whose dominant scale is large, determines the bending
energy spectrum Vbk = ρω2

k
|ζk|

2/2 as well as its azimuthally-integrated one Vb, whose dominant
scale is small. This is due to the fact that ωk is proportional to k2,i.e., Vbk ∝ k4|ζk|

2. The
field looks like an intermediate state between the two fields reported in Fig. 2 of Ref. [9], which
supports the adequacy of the energy level of the present simulation.
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Figure 3. Field of total energy density.
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Figure 4. Field of stretching energy density.

On the contrary, the total energy density field shown in Fig. 3 has non-uniform distribution
that consists of fine point-like structures. The total energy spectrum shown in Fig. 1 has two
local maxima: one is located in low wavenumber k ≈ 8π and the other in high wavenumber
k ≈ 256π. Most of the energy is possessed by the latter high-wavenumber modes, since the
number of the high-wavenumber modes is much larger than that of the low-wavenumber ones as
known from the logarithmic scale of the horizontal axis. This fact as well as the random phase
of weak turbulence in high wavenumber leads the fine-scale structures in the real space.

We also examined the fields of the kinetic energy K and the bending energy Vb, though the
graphs are omitted. Both fields have similar fine-scale structures, while the dominant scales of
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their spectra are different. It may be interesting to point out that the dominant scales of the
spectra do not necessarily correspond to the characteristic scale in the real space. We must stress
the importance of taking the phase correlations as well as the number of modes into account.

In Fig. 4, we find the ridge and the d-cone structures in the field of the stretching energy.
It should be noted that the stretching energy stems from the nonlinearity of the FvK equation,
which may induce the phase correlation of modes. It is also consistent with the stretching energy
spectrum Vs in Fig. 4, whose dominant scale is in low-wavenumber range.

3.2. Bundle structure and nonlinearity
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Figure 5. Bundle structure in the field of
stretching energy density.
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Figure 6. Time evolutions of nonlinearity
(red), nonlinear (green) and linear (blue)
energies. Circles show representative times.

We furthermore find that the bundle structures of the ridges, which are shown in Fig. 5,
appear intermittently in the time evolution of the stretching energy field. The time evolution
suggests the existence of active and moderate phases in the turbulent state. In Fig. 6 shown is
the time evolution of nonlinearity, which is estimated by the ratio of the nonlinear energy to the
linear energy,

∫

Vsdk/
∫

ELdk, corresponding to the ratio of the quartic to quadratic order of the
complex amplitude in Hamiltonian, H4/H2. The time evolutions of the nonlinear (green) and
linear (blue) energies are also drawn in Fig. 6, where the linear energy is shifted downward by
one decade. Quasi-periodic sawtooth behavior with mutually-synchronized phase is observed.
Strong nonlinearity appears intermittently, while the nonlinearity always fluctuates randomly
with relatively small amplitude. The bundle structures are observed at such active phases with
the strong nonlinearity.

3.3. Probability distribution functions

Probability distribution functions (PDFs) are examined to characterize the statistical properties.
Fig. 7, where the Gaussian PDF is also drawn for reference, shows the normalized PDFs of the
lateral displacement ζ at five representative times respectively in active and moderate phases.
As the representative times of active phase chosen are the times when the nonlinearity takes top
five local maxima in Fig. 6, and the times 1.5× 10−3 prior to these times are chosen as that of
moderate phase. Although the fluctuation of the PDFs of ζ are large, one can safely say that the
PDFs are almost Gaussian independent of the phases. The PDFs of p have little fluctuation and
are well approximated by the Gaussian distribution, though the graphs are omitted here. The
standard deviation of the lateral displacement ζ (the momentum p) in active phase is almost
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Figure 7. PDF of ζ(x) at active (red) and
moderate (blue) phases and Gaussian (green).
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Figure 8. PDFs of K(x), Vb(x) and Vs(x) at
active (red) and moderate (blue) phases.

twice (the same as) that in moderate phase, which is consistent with the fact that most energy
of the lateral displacement ζ (the momentum p) is in low- (high-)wavenumber range.

Fig. 8 shows the PDFs of the decomposed energies, K, Vb and Vs at the representative times.
Since the momentum p is regarded as a random variable that obeys the Gaussian distribution
with zero mean, the PDF of K is expected to obey the χ2-distribution with 1-degree of freedom,
χ2(1), following fromK ∝ p2. Since the expanded expressions of Vb and Vs in Eq. (2) respectively
contain three quadratic terms and one cross term as Vb ∝ ζ2xx + ζ2yy + 2(1 − ν)ζ2xy + 2νζxxζyy
and Vs ∝ χ2

xx +χ2
yy +2(1+ ν)χ2

xy − 2νχxxχyy , the PDFs of Vb and Vs may be approximated by

χ2-distribution with 3-degrees of freedom, χ2(3), under the assumption of the independency of
the derivatives whose supports exist in high-wavenumber range. Although the distributions of
linear energies, K and Vb, are well approximated, that of Vs slightly deviate from χ2(3) in the
vicinity of Vs ∼ 107 where the nonlinearity is large. While the distributions of K and Vb are
independent of the phases, that of Vs shifts according to the phases as seen in Fig. 8.

3.4. Nonlinear interactions among modes

101

102

103

104

101 102 103

E
ne

rg
y 

S
pe

ct
ru

m

k

E

Vs

mean

t = 0.592
1.852
2.897
4.410
6.563

0.442
1.702
2.747
4.260
6.413

×10−3

Figure 9. Representative energy spectra in
active (red) and moderate (blue) phases.
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Figure 10. Representative energy fluxes in
active (red) and moderate (blue) phases.
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Fig. 9 shows the representatives of the total energy spectra E and the stretching energy Vs in
both active and moderate phases. In low-wavenumber range, k . 300, the magnitudes of E in
the active phases are relatively larger than those in the moderate phases, though they coincide
in high-wavenumber range. The result is consistent with the PDF in the real space, shown in
Fig. 8, since the linear energy dominates most of the total energy and remains unchanged in
both phases. The difference appears more clearly in the curves of Vs: the magnitudes of Vs in
active phases in the forcing scale are almost one digit larger than those in moderate phases.

The fluxes of the total energy are also examined and shown at the representative times, since
the nonlinear interaction among Fourier modes governs them. It should be noted here that
these fluxes are different from the fluxes of linear energy which are conventionally used in WTT.
The difference between those in the active and moderate phases is clearly seen in Fig. 10. The
fluxes in the moderate phases can happen to take negative values in some wavenumber range.
The fluxes in the active phases increase rapidly in low-wavenumber range, k . 8π, and decrease
to around common value in relatively high-wavenumber range, k & 100π, corresponding to the
coincidence of the energy spectra in both phases as seen in Fig. 9. It means that the bundle
structure observed in the real space is the embodiment of the strong nonlinear interactions
among Fourier modes, which cause the energy input from the external force into the system.

4. Concluding Remark

We have investigated the real-space dynamics and the nonlinear interactions among Fourier
modes in elastic wave turbulence by numerically simulating the Föppl-von Kármán equation.
We find that the bundle structures of ridges appear intermittently in the time evolution of the
stretching energy field, which is the nonlinear part of the total energy. The time evolution
of the nonlinearity indicates the existence of active and moderate phases in turbulent state.
Conditional sampling analysis to distinguish these phases reveals that the nonlinear interactions
among modes behave differently depending on whether they are in active or moderate phases.
The bundle structure, which stems from the strong nonlinear interactions, plays the essential
role in supplying energy into the system. Some of the results, such as the bundle structures and
the sawtooth behavior in Fig. 6, may depend on the forcing term adopted in the present work.
It is our future work to examine their universality.
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