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Abstract. Soliton propagation dynamics under the presence of a complex potential are
investigated. Cases of both symmetric and non-symmetric potentials are studied in terms of their
effect on soliton dynamics. The existence of an invariant of soliton propagation under specific
symmetry conditions for the real and the imaginary part of the potential is shown. The rich
set of dynamical features of soliton propagation include dynamical trapping, periodic and non-
periodic soliton mass variation and non-reciprocal dynamics. These features are systematically
investigated with the utilization of an effective particle phase space approach which is shown in
remarkable agreement with direct numerical simulations. The generality of the results enables
the consideration of potential applications where the inhomogeneity of the gain and loss is
appropriately engineered in order to provide desirable soliton dynamics.

1. Introduction
Soliton formation and dynamics in spatially inhomogeneous structures is a subject of intense
research interest with applications to many branches of physics, including optical waves in
nonlinear photonic structures [1] and matter waves in Bose-Einstein Condensates (BEC), [2].
Spatial modulations of the linear or the nonlinear refractive index of an optical medium have been
shown to result in the formation of self-localized waves that have no counterpart in homogeneous
systems. [3, 4, 5] Lattice solitons have been shown to exist in a large variety of configurations.
[6, 7] In the case of strong spatial modulations, soliton profiles can be interestingly complex but
wave dynamics are rather restricted due to the deep soliton trapping and the resulting transverse
immobility. Contrarily, in the case of rather weak modulations, soliton profiles remain simple
but soliton dynamics can be quite rich and have interesting features with great potential for
applications. In such cases solitons move actually as effective particles in a potential, with the
form of the latter depending strongly on the characteristics of the soliton. Therefore, different
solitons may undergo qualitatively different dynamics in the same inhomogeneous structure.
[6, 7]

The consideration of spatial modulation of the material gain and losses appears naturally
as a next step for engineering the soliton formation and dynamics and opens new possibilities
for applications. The formation of gap solitons has been investigated in periodic lattices with
inhomogeneous [8, 9, 10, 11] gain and loss properties. Even for cases of homogeneous gain/loss
it has been shown that the interplay between the dynamical soliton power variation and the
refractive index modulation results in a rich set of soliton dynamical features. [12, 13, 14]

In this work we study soliton dynamics under the presence of relatively weak symmetric and
non-symmetric complex potentials. The presence of gain and loss not only affects the soliton
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mass (power) but also the effective potential under which the soliton is moving due to the spatial
modulation of the refractive index. Soliton dynamics are studied in the three-dimensional phase
space of an effective particle of varying mass and the role of spatial symmetries as well as
deviations from symmetry is investigated.

2. Model
Soliton propagation in the presence of a complex potential is described by the inhomogeneous
NLS equation:

iuz + uxx + [V (x) + iW (x)] u+ 2|u|2u = 0 (1)

where u is the wave field envelope, z the normalized propagation distance, and x the scaled
transverse coordinate. V (x) andW (x) are the real and imaginary parts of the complex potential.
The soliton can be treated as an effective particle [15] of variable mass m =

∫ |u|2dx and
momentum p = i

∫
(uu∗x − uxu

∗)dx = mv at a position x0, corresponding to soliton’s center,
moving with velocity v in an effective potential Ueff due to the actual complex potential,
according to the equations

dm

dz
= 2

∫ +∞

−∞
|u|2W (x)dx (2)

m
dv

dz
= − ∂

∂x0

[
2

∫ +∞

−∞
|u|2V (x)dx

]
≡ −∂Ueff

∂x0
(3)

dx0
dz

= v (4)

The dynamical system defined by Eqs. (2)-(4) determines soliton dynamics. In the case of
real potential (W = 0), soliton moves with a constant mass, the system has fixed points
at the extrema of the effective potential (Ueff ) and the total energy of the effective particle
H = mv2/2 + Ueff (x0) is conserved. The presence of a nonzero part of the potential (W �= 0)
introduces an additional degree of freedom related to the particle mass variation and causes the
destruction of the conserved quantity of total energy. These features result in drastic qualitative
changes of soliton dynamics in comparison to cases of real potentials.

From Eqs. (2),(3) we can obtain

m
dv

dm
=

− ∂
∂x0

[∫ +∞
−∞ |u|2V (x)dx

]
∫ +∞
−∞ |u|2W (x)dx

≡ I(m, v, x0) (5)

with the quantity I(m, v, x0) depending, in general, on all soliton parameters. However, it is
readily seen that under the condition

∂V (x)

∂x
= CW (x) (6)

with C being a constant, we have I(m, v, x0) = −C resulting in a conserved quantity of the
effective particle motion given by

K(m, v) = C lnm+ v = const. (7)

that restricts soliton dynamics in two-dimensional submanifolds of the phase space (x0, v,m).
Moreover, this condition implies the existence of a stable/unstable fixed point at the
minima/maxima of the real part of the potential.
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The above conditions and discussion are generic with respect to the amplitude and the profile
of the complex potential, since the equations (2) and (3) are exact equations for the soliton mass
and velocity variation under propagation when u is an exact solution of eq. (1). However, in
this work we are mostly interested in soliton dynamics that occur in relatively weak potentials
where the solitons are quite mobile. In this case the equations (2) and (3) can be treated
perturbatively and provide analytical results by utilizing in the respective integrals the well
known soliton solution of the homogeneous NLS equation (V = W ≡ 0) that is given by
u = ηsech[η(x − x0)] exp[i(vx/2 + 2φ)] with x0 and v = dx0/dz being the position and the
velocity of the soliton center and dφ/dz = η2/2− v2/8. The soliton mass is m = 2η.

In the following, we focus on periodic potentials and we investigate soliton dynamics for cases
where symmetry conditions or the the condition (6) are either fulfilled or violated. In all cases,
the amplitude of the various potentials are of the order of 10−2 so that the perturbative approach
is valid.

3. Results
A characteristic periodic profile of the complex potential is the sinusoidal profile

V (x) = V0 cos (K0x+Δx) , W (x) = W0 sin (L0x) (8)

with V0, W0 being the amplitudes and K0, L0 the wavenumbers of the real and imaginary parts
of the potential. The real part of the potential is an even function for Δx = 0. The complex
potential is known to have a purely real spectrum under the additional condition W0 < V0 for
K0 = L0. [16] The condition (6) for the existence of the invariant quantity (7) requires both
Δx = 0 and K0 = L0 but does not restrict the relative amplitude of the real and imaginary
parts. For the potential (8), Eqs. (2), (3) provide

dm

dz
= − 2πW0L0

sinh (L0π/m)
sin(L0x), m

dv

dz
= −∂Ueff

∂x0
(9)

with

Ueff = − 2πV0K0

sinh (K0π/m)
cos (K0x+Δx) (10)

Soliton moves as a particle of varying mass in a potential having a constant spatial period but
dynamically varying amplitude due to its strong dependence on the particle mass. The topology
of the orbits in the three-dimensional phase space (x0, v,m) depend strongly on the parameters
of the potential as shown in Fig. 1. The case of an even real part and an odd imaginary part
with equal periods (L0 = K0) is shown in Fig. 1(a) for soliton initial conditions corresponding
to m = 1, positive and negative velocities (v) and various positions (x0). It is obvious that,
in contrast to the conservative case W0 = 0, initial conditions with x0 and v of opposite sign
do not follow the same orbit. Moreover, all orbits with the same initial mass and velocity are
restricted on the two-dimensional invariant manifold (7), due to the fulfillment of the condition
(6) as shown in Fig. 1(b). Characteristic cases of trapped and traveling soliton propagation are
shown in Fig. 2(a) and (b). It is worth emphasizing that in the case of a conservative potential
the soliton amplitude and width oscillate in such a way that the soliton mass remain constant,
whereas in the dissipative case the soliton mass undergoes oscillations.

Phase space orbits for the case of a potential with an even real and an odd imaginary part,
but with different periods of a rational ratio, are depicted in Figs. 1(c) and (d) for positive
and negative initial velocities, respectively. In this case the condition (6) is not fulfilled and
orbits are not restricted in a two-dimensional manifold. Moreover, as shown in Fig. 1(d), the
soliton mass variation can be nonperiodic. Soliton propagation for such a characteristic case of
continuous mass increasing is depicted in Fig. 2(c). The case of real and imaginary parts with

IC-MSQUARE 2014 IOP Publishing
Journal of Physics: Conference Series 574 (2015) 012028 doi:10.1088/1742-6596/574/1/012028

3



(a) (b) (c)

(d) (e) (f)

Figure 1. Phase space orbits of the effective particle model for a soliton with initial mass
m(0) = 1 in the periodic potential (8) with V0 = 0.01, W0 = V0/2 and K0 = 1. (a) Potential:
L0 = 1, Δx = 0, Initial conditions: x0(0) = 0, v(0) > 0 (red / dark gray), v(0) < 0, (cyan /
light gray); (b) Potential: L0 = 1, Δx = 0, Initial conditions: v(0) = 0.05 (the two-dimensional
surface (7) is also shown); (c) Potential: L0 = 1/3, Δx = 0, Initial conditions: v(0) = 0.05; (d)
Potential: L0 = 1/3, Δx = 0, Initial conditions: v(0) = −0.05; (e) Potential: L0 =

√
2, Δx = 0,

Initial conditions: v(0) > 0 (red / dark gray), v(0) < 0, (cyan / light gray); (f) Potential:
L0 = 1, Δx = −π/3, Initial conditions: v(0) = 0, x0(0) = π/3, 1.5π/3, 2.8π/3.

spatial periods of an irrational ratio is depicted in Fig. 1(e). It is shown that in addition to
trapped orbits, we also have orbits corresponding to traveling solitons with quasiperiodic mass
oscillations, each one densely filling a two-dimensional surface. Soliton propagation for such a
characteristic case is shown in Fig. 2(d), where the inset shows the details of the quasiperiodic
mass and amplitude oscillations.

Finally, a case where neither a spatial symmetry exist nor the condition (6) is fulfilled is
shown in Fig. 1(e), where the real part is not an even function whereas the imaginary part is an
odd function. In this case, there exist an initial condition for which x0 = −Δx and v = 0 remain
constant but the local loss is nonzero, resulting to a soliton evolution where the soliton mass
continuously decreases and no transverse soliton motion takes place. Such a characteristic case
is depicted in Fig. 2(e). Other initial conditions can result to traveling solitons with increasing
mass or trapped solitons with decreasing mass, as also shown in Fig. 2(f).
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v(0) = −0.05; (d) Potential: as in Fig. 1(e), Initial conditions: m(0) = 1, x0(0) = π, v(0) = 0.05,
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