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Abstract. Molecular dynamics computer simulations were combined with an electrodiffusion model to
compute conduction of simple ion channels. The main assumptions of the model, and the consistency,
efficiency and accuracy of the ion current calculations were tested and found satisfactory. The calculated
current-voltage dependence for a synthetic peptide channel is in agreement with experiments and correctly
captures the asymmetry of current with respect to applied field.

1. Introduction
Ion channels are pore-forming assemblies of transmembrane proteins that mediate and regulate ion
transport through cell membranes [1]. They are ubiquitous to all life. In humans and other higher
organisms, they are essential for conducting nerve impulses, cardiac processes, muscle contraction and
epithelial transport. In lower organisms, they can act as toxins or antimicrobial agents, and are involved in
infectious diseases. Because of their important and diverse biological functions they are frequent targets
of drug action. Ion channels also have numerous applications in biotechnology. For these reasons, studies
of ion channels are at the forefront of biophysics, structural biology and cellular biology.

The availability of X-ray structures has greatly advanced our understanding of ion channels [2].
However, their mechanism of action remains elusive: ion channels are dynamic by nature, but X-
ray crystallography captures the channel in a single, sometimes non-native state. To explain how ion
channels work, X-ray structures have to be supplemented with dynamic information that, in principle,
can be obtained from molecular dynamics (MD) simulations[3]. However, MD simulations suffer from
their own problems, such as inability to access sufficiently long time scales or limited accuracy of
force fields. A direct way to assess their reliability is to compare calculated ionic conductances with
electrophysiological measurements obtained under similar conditions.

In MD simulations, channel conductance, defined as the ratio of ionic current through the channel to
applied voltage, can be calculated once the current, the number of ions that traverse the channel per unit
time when an external electric field is applied to the system, has been determined [3]. If the conductance
is small, a voltage significantly higher than the experimental one needs to be applied to collect sufficient
statistics of ion crossing events. Then, the calculated conductance is extrapolated to the experimental
voltage using procedures of unknown accuracy. We propose an alternative approach in which MD
simulations at a single voltage are combined with an electrodiffusion (ED) model to recover the full
current/voltage (I-V) dependence. Here, we first test the assumptions of the ED model and determine
the reliability of the calculated conductance in a model channel built of trichotoxin (TTX), a peptide
containing 18 amino acids [4]. The backbone of the TTX was restrained to limit channel fluctuations.
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Next, we investigate without any restrains a hexametric channel, LS3, in which each monomer is built of
two amino acids, leucine (L) and serine (S) in the sequence (LSSLLSL)3. For this channel we compare
calculated and experimentally measured [5] conductance at several applied fields.

2. Theory and Methods
We assume that ion transport through a transmembrane channel can be described as a diffusive process
in the presence of an external electric field and the intrinsic potential of mean force (PMF) due to the
channel, the membrane, water and other ions. This implies that the channel structure does not undergo
substantial changes when an electric field is applied. The transport of ions across channels in the presence
of an electric field can be obtained from the time evolution of the probability density of ions in the system,
which is governed by the Smoluchowski equation, obtained from the Fokker-Planck equation with the
condition that the equilibrium probability distribution is the Boltzmann distribution:

∂P (z, t)

∂t
= −∇J(z), J(z) = −∇[D(z)P (z, t)] +

D(z)

kBT
F (z)P (z, t) (1)

where J(z) is the current, D(z) is the diffusivity, P (z, t) is the probability density of ions, F (z) is the
mean force acting on the ion at position z in the channel along the normal to the membrane, kB is the
Boltzmann constant and T is temperature. This 1-dimensional representation is justified if equilibration
of ion positions along directions parallel to the membrane is markedly faster than transport across the
channel. This means, for example, that there are no strong ion binding sites along the channel.

If the bulk concentrations of ions on both sides of the membrane and the applied field remain constant
over time, then the transport of ions through a channel is a stationary process with absorbing boundary
conditions. In other words, the system reaches a steady state and the Fokker-Planck equation reduces to
the ED equation, which is a generalized form of the Nernst-Planck (NP) equation [1]. If we assume that
that the diffusivity in the channel is constant and known (see Results) integration of this equation yields:

J

D
=
ρ(z1) exp(E(z1)/kBT)− ρ(z2) exp(E(z2)/kBT)∫ z2

z1
exp(E(z)/kBT)dz

, (2)

Here, the number density per unit length, ρ(z), is proportional to the steady-state probability distribution.
The total potential of mean force, E(z), is the sum of the intrinsic PMF of an ion crossing the channel in
the absence of an electric field, A(z), and the electrostatic potential energy of the applied field, qV (z).
z1 and z2 define two planes inside the channel. In principle, their choice is arbitrary, but generally, the
accuracy improves if they are well separated. Eq. 2 is not the only way to solve the ED equation for J ,
but it is the only expression that does not require knowledge of the full density profile, ρ(z), inside the
channel. For a given applied voltage, only the boundary densities ρ(z1) and ρ(z2) need to be calculated,
which should be markedly more efficient than determining ρ(z). This makes calculations of the full I-V
dependence facile.

The equilibrium PMF, A(z), can be obtained from separate simulations of the channel in the absence
of an electric field [6]. Alternatively, it can be determined through integration of Eq. 1, which yields:

A(z2)−A(z1) = kB

[
ln ρ(z1)− ln ρ(z2)−

J

D

∫ z2

z1

1

ρ(z)
dz

]
− qEel(z2 − z1), (3)

where Eel(z2 − z1) is the change in electric field between z1 and z2. This means that A(z) can be
determined from a non-equilibrium simulation that is sufficiently long to calculate J and ρ(z) with
satisfactory accuracy. Then, only the boundary terms are needed to calculate currents at other applied
fields, as described above.

To initiate our MD simulations, both the TTX and LS3 channels were placed in a phospholipid bilayer
that was in contact with water lamellae containing 1 M KCl on both sides. A schematic of the system is
shown in Fig. 1. Simulations were carried out at several different applied fields for times of 0.5–2 µsec.
The simulation protocol resembled that described in our earlier study on ion channels[7]. From these
simulations the ion currents, density profiles and/or the density boundary terms were obtained.
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Figure 1. Schematic of an ion channel in a
membrane. The water-filled pore significantly
lowers the free energy barrier to ion transport,
as shown on the right side of the figure.

Figure 2. Free energy profile of K+ in TTX
at 0 V (red) and reconstructed from MD at
50 mV (green), -50 mV (blue), and 100 mV
(magenta). z = 0 is the center of the membrane.

3. Results
In the ED equation, it is assumed that the probability of ion crossing is stationary and the numbers of
crossing events in disjoined intervals are independent of each other, which implies that ion crossing is
a Poisson process. However, if motions of ions in a channel are correlated or a channel undergoes slow
conformational changes these assumptions would not be satisfied. Thus, we constructed semi-log plots
of the cumulative probability distribution of waiting times between consecutive ion crossing events vs.
time. For a Poisson process, they should yield straight lines with the negative slope equal to the inverse
of the average waiting time, which is precisely what we found from our simulations.

The diffusivity was calculated by way of the Einstein relation from short simulations in which an ion
was placed at different positions along z, as described previously [7]. Its values were found to be constant
to within the statistical errors, so the dependence of D(z) on z was suppressed in the ED equation.

The free energy profiles for K+ in TTX reconstructed from Eq. 3 are shown in Fig. 2. We see that
A(z) obtained from simulations at ±50 mV and 100 mV are in good agreement with A(z) calculated
from the equilibrium simulation. Similarly, the reconstructions for the LS3 channel (not shown) are very
good for voltages of ±100 mV, but not for -200 mV. This indicates that the ED model begins to break
down at larger voltages.

For a stationary process, J is independent of the limits of integration in Eq. 2. Thus, calculating J for
different ranges of z provides a valuable consistency test. If J is not approximately constant something
is amiss; either A(z) or the densities at the endpoints, ρ(z1) and ρ(z2), are inaccurate, or the assumption
that the drift term in the Fokker-Planck equation is only due to the equilibrium free energy profile and
applied field is incorrect. As shown in the example of K+ in the TTX channel (see Fig. 3), the ED
currents integrated in the range [z1(= −z2), z2] are quite stable for z2 between 10 and 15 Å. For smaller
integration ranges, the errors increase, most likely due to the larger relative contributions from the density
profiles deep inside the channel, which are known less accurately.

For the LS3 channel, in addition to long MD trajectories at -200, -100 and 100 mV, we also generated
shorter trajectories at -50, 50 and 200 mV, from which we extracted ρ(z1) and ρ(z2) and computed the
current by way of the procedure described in the previous section. In Fig. 4, the results are compared with
the experimentally determined I-V curve. The K+ current calculated directly from MD simulations is in
excellent agreement with the total experimental current. The corresponding ED currents are very similar
with the exception of that at -200 mV, indicating that the ED equation might become less accurate at large
applied fields. Our calculations correctly capture the non-Ohmic character of the currents, which are
smaller for the positive voltages than for negative voltages. There is, however, one discrepancy between
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Figure 3. K+ ED model currents for TTX
at 50 mV (green), -50 mV (blue) and 100
mV (magenta). Solid lines are the currents
observed in the simulations.

Figure 4. The I-V curves for K+ (red) and Cl−

(green) in the LS3 channel. Experimental data
extracted from [5] are shown as black circles.

the calculated and experimental currents. The channel is selective for K+ over Cl− by a factor of 10,
which means that Cl− currents should be quite small. This is not the case in the simulations, as currents
of K+ and Cl− are comparable. The most likely reason for this outcome is the lack of balance between
force fields describing interactions of Cl− with bulk water and the environment inside the channel.

4. Conclusions
Ion currents were calculated directly from MD simulations and computed from a 1-dimensional ED
model, and were found to be in good agreement for a model system based on a heptameric TTX channel
structure. The main assumptions underlying the ED model have been shown to be valid: the distribution
of ion-crossing events follows Poisson statistics and the thermodynamic force on an ion can be obtained
from the intrinsic (zero-voltage) PMF and the applied electric field. The intrinsic PMF can be obtained
equally accurately from equilibrium simulations at 0 V and from non-equilibrium density profiles. Once
this PMF is known, the current at a desired voltage can be calculated efficiently only from the knowledge
of ion densities near the ends of the channel. The extension of this approach to the LS3 channel yields an
I-V curve that reproduces the experimentally observed non-Ohmic behavior of the channel. Capturing
this feature, called rectification, is a valuable and sensitive test of reliability of computer simulations.
The simulations also revealed that standard force fields for Cl− are, most likely, improperly balanced.
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