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Abstract. We generalize previous studies on critical phenomena in communication networks
[1,2] by adding computational capabilities to the nodes. In our model, a set of tasks with random
origin, destination and computational structure is distributed on a computational network,
modeled as a graph. By varying the temperature of a Metropolis Montecarlo, we explore the
global latency for an optimal to suboptimal resource assignment at a given time instant. By
computing the two-point correlation function for the local overload, we study the behavior of
the correlation distance (both for links and nodes) while approaching the congested phase:
a transition from peaked to spread g(r) is seen above a critical (Montecarlo) temperature
T.. The average latency trend of the system is predicted by averaging over several network
traffic realizations while maintaining a spatially detailed information for each node: a sharp
decrease of performance is found over T independently of the workload. The globally optimized
computational resource allocation and network routing defines a baseline for a future comparison
of the transition behavior with respect to existing routing strategies [3,4] for different network
topologies.

1. Introduction

Critical phenomena in random networks are an active research field not confined to theoretical
physics or mathematics but their application to computer science, biology, traffic engineering
and social sciences is increasingly common [5-7]. In this work the problem of congestion in
computer networks is addressed, but it is easy to recognize the analogies with traffic flow,
container logistics and energy distribution, just to name a few [5].

Ohira and Sawatari [1] first studied the onset of a phase transition within a simple model of
communication network under different rates of traffic generation. Their model is defined by a
set of nodes on a two dimensional lattice and controlled by a set of parameters such as packet
generation rate and routing rules. The expected phase transition is observed by means of the
average latency by which packets arrive at their destination during a dynamical simulation over
time. In 2001, Soleé and Valverde [2] slightly extended the model and studied the time-series
dynamics of the number of packets at individual routers, and found a set of power laws at the
critical point.

The present model tries to build on the previous attempts, in which only the network
communication process has been considered, by (i) seamlessly including the computation time
(information processing in general) into the total latency and (ii) avoiding the explicit temporal
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evolution by considering an average traffic over a given instant. In this way the typical problem
of the queue size of dynamic simulations is entirely avoided [8] and the focus is set on the
“instantaneous” behavior of the system. In a sense, the model computes the finite-difference
load derivative during the time window for each computational node and network link. The
model allows an extremely fast evaluation of the latency and this unfolds the possibility of
finding the network’s optimal resource allocation. The optimization is performed after setting
the network topology and the random traffic distribution [9,10]. Here we try to set a baseline for
comparing any routing algorithm with the best solution found by a Simulated Annealing (SA)
process. Moreover, by varying the temperature in the Metropolis Montecarlo (MC), we estimate
the sensitivity of the system performance with respect to the “amount of non-optimality” in the
allocation of resources (both routing and processing).

We present the behavior of the average latency with respect to load and resource optimization
for two different topologies: a two-dimensional lattice and a Barabdsi-Albert (BA) random
network. We find a transition to the overloaded phase both for a critical load and for a critical
temperature T.. Finally, the two-point correlation function of the local overload for nodes and
links is used to show how the system behaves while going from a free to a congested regime: the
g(r) for the nodes is found to sharply change its shape from localized to spread when the (MC)
temperature is raised.

2. The Model

The model considers three basic components: (i) the physical support for the communica-
tion/computation process, (ii) the discrete tasks that are transported/executed, and (iii) the
limited capability of the links/nodes to handle each subtask. The communication network is
mapped onto a graph where nodes mimic the communicating agents (i.e. routers and servers in
a computer network), and the links between them represent communication lines. Each node is
characterized by its computational power and each link has its own nominal latency and band-
width. The computational capability is measured by the number of executable task requests
allowable in unit time. This should be intended in two ways: each node is characterized by its
own “speed” and by the maximum number of concurrent unitary tasks which can be executed
at nominal speed. With respect to the network, each link transports the information at nominal
speed when its bandwidth is larger than or equal to the total requests of the tasks running
on it (this is equivalent to the betweenness centrality measure of the link). In both cases of
networking and computation, whenever the load surpasses the available capabilities, a linear
slowdown /overload factor is introduced to take into account the increased time of execution of
each subtask. Each link is modeled to be able to support several concurrent communications
without overloading, while each computational node can execute more than one subtask at the
same time.

We consider two topologies: a simple 2D lattice and a Barabasi-Albert random network, with
the same number of nodes, but different connectivity.

From the initial node through each stage and until the final node, the information is passed
to the next step via a sequence of network links (see Fig.1): the length of each sequence is, in
principle, bounded only by the total number of links in the network (no loops are permitted).

The time (latency) needed to complete the k-th task 7" is the sum of two components:

Lz]ﬁﬂoml _ LkCPU + szet’

e the network latency Lzet is the sum of the delays Lze(tn m) introduced by the direct hops
n < m (with nominal delay DN¢") within the paths connecting each pair of subtask;

e the computation latency LkCP U is the sum of the delays chf;:Ul o due to all subtasks.
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Figure 1. Task structure. Green circles are assigned as the input and output of the task. Red
circles represent the processing stages. White circles are nodes used as simple routers between
elementary network hops. The basic symbols used to compute the latency are depicted.

The optimizer tries to find the best possible combined performance for the tasks. After
initializing the topology of the network and its capabilities, a random, uniform, distribution of
traffic is generated. The SA procedure starts from a random allocation of the tasks over the
network and typically has a poor performance since it is very unlikely that the computing nodes
and the links will have a “good” load distribution (this could be easily estimated since it is
equivalent to a balls-in-bins statistical problem).

Being able to simulate the system at constant temperature (T) is equivalent, in a sense, to
having a parameter with which to set the amount of “errors” in the total resource allocation. At
T =~ 0, the simulation ideally leads to an optimal routing and node allocation. Slowly increasing
T drives the system through more realistically accessible states and finally to totally random
resource allocations at high 7T'.

Results

Simulations were run using several instances of BA networks and 2D lattices with 100 nodes and
random traffic. Each node is assigned the same unit power. Each link capability is proportional
to the sum of the node degrees. Tasks are modeled with 2 processing stages, each with a
computational request of one fourth of unit power. This ratio sets the theoretical maximum
computational requests before CPU overload to 200 tasks. Each point on the graphs is obtained
by averaging over 10 runs. As shown in Fig.2 (left panel, CPU), the curve labeled with 7' = 107"
represents the optimal latency at all loads and the transition sharply occurs with a load of
nt = 150 tasks (note that the maximum theoretical CPU capacity would allow nt = 200 with no
overload), then a linear latency growth follows with no saturation at high loads. In the central
panel (NET), the curve labeled with T = 10~ (optimal), starts a smooth transition at nt = 175.
then the slope increases up to nt = 225 and finally saturates for nt > 250. Up to 7' = 2.0 - 1073
nothing changes, then (solid violet curve) the latency worsens for low loads and grows from about
nt = 75. The very high load region nt > 250 does not suffer at all from resource allocation errors
up to T = 2.0- 1072, Another transition is observed for 7' > 2.0 - 1072 (red curve): the whole
curve grows (low and high loads) and has a steep slope at nt = 25. For T' > 2.0-10~2 the latency
curve shows an increasing vertical offset, even for nt = 25. Summarizing, the critical load for
both topologies (see Fig.3) starts well before the theoretical maximum CPU load of 200 tasks,
but the average latency for the lattice is much larger than for the BA even though both share
the same connectivity: The BA is able to resist higher loads than the lattice since the average
path is much shorter, thus the network has a lesser impact on the global latency. The resource
allocation quality (7') on network performance has a very strong impact near the critical load
(nt ~ 150). Finally, the g(r) of the CPU overload at nt ~ 200 (Fig.4), is a power law for T < T,
but becomes uniformly spread at high values, while for the network starts at zero everywhere
and at high T rises especially for distant links. In general for high 7" we observe an exponential
growth of the average number of internal task hops that is only limited by the network size.
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Figure 2. Barabasi random network: Average latency (right) and its components (computation
on the left and networking in the center box) dependence on the load computed for different
Montecarlo temperatures (107°,4-1073,1072,1071).
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Figure 3. 3D representation of how the global average latency depends on the traffic and on
the Montecarlo temperature: The deep blue basin with low latency can be reached with low
traffic and moderately bad routing or with high traffic but optimal routing/resource allocation

CPU

NET

0.8

0.6

0.4

Traffic: 200 tasks
1.

e 1.0e05
44 5.0e-04
< 1.0e:03
> > 2.0e-03
— 4.0e-03
5.0e-03

~ 6.0e-03

+ 8.0e-03
e 1.0e-02
a-a 20002
« 3.0e-02

* 5.0e-02
ee 1.0e-01
+-+ 40e01

0.8

0.6

0.4

aa

1.0e-05
5.0e-04

4 1.0e-03
> 2.0e-03

4.0e-03
5.0e-03
6.0e-03
8.0e-03
1.0e-02
2.0e-02

° 3.0e-02
* 5.0e-02
¢ 1.0e-01

4.0e-01

Figure 4. BA: Two-point correlation of the overload (nodes and links) with a traffic of 200 tasks
for several temperatures. Once 7' > 5 - 1072, the CPU overload spreads over all the network.
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