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Abstract. In the present work, we derive a family of higher order exponential variational
integrators for the numerical integration of systems containing slow and fast potential forces.
To increase the order of variational integrators, first the discrete Lagrangian in a time interval
is defined as a weighted sum of the evaluation of the continuous Lagrangian at intermediate
time nodes while expressions for configurations and velocities are obtained using interpolating
functions that can depend on free parameters. Secondly, in order to choose those parameters
appropriately, exponential integration techniques are embedded. When the potential can be
split into a fast and a slow component, we use different quadrature rules for the approximation
of the different parts in the discrete action. Finally, we study the behavior of this family of
integrators in numerical tests.

1. Introduction
In many Hamiltonian systems, the potential part of the corresponding energy function is
composed of different parts with strongly varying dynamics. As an example, in classical
molecular dynamics, the potential energy includes contributions of several types of atomic
interaction. These interactions lead to extremely stiff potentials which force the solution of
the equations of motion to oscillate on a very small time scale [1].

Following [1, 2, 3], in order to derive numerical integration schemes for these systems, we split
their potential energy into a fast and a slow component. For the resulting Hamilton function, we
derive a family of higher order exponential variational integrators that use different quadrature
rules in the discrete action corresponding to the different potentials.

2. Review of variational integrators using interpolation techniques
For the derivation of high order variational integrators, we need to recall discrete variational
calculus [4]. A discrete Lagrangian is a map Ld : Q × Q → R which may be considered as
an approximation of a continuous action with Lagrangian L : TQ → R, i.e. Ld(qk, qk+1) ≈∫ tk+1

tk
L(q, q̇)dt. The action sum Sd : QN+1 → R, N ∈ N corresponding to the Lagrangian

Ld is defined as Sd(γd) =
∑N−1

k=0 Ld(qk, qk+1), with γd = (q0, . . . , qN ) representing the discrete
trajectory. The discrete Hamilton principle states that a motion γd of the discrete mechanical
system extremizes the action sum, i.e. δSd = 0. By differentiation and rearrangement of the
terms and having in mind that both q0 and qN are fixed, the discrete Euler-Lagrange equations
(DEL) are obtained [4]

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0, k = 1, . . . , N − 1 (1)

where the notation DiLd indicates the slot derivative with respect to the i-th argument of Ld.
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The definition of the discrete conjugate momentum at time steps k and k + 1 reads
pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1), k = 0, . . . , N − 1. The latter equations, also
known as position-momentum form of a variational integrator, can be used when an initial
condition (q0, p0) is known, to obtain (q1, p1).

To construct high order methods, we approximate the action integral along the curve segment
between qk and qk+1 using a discrete Lagrangian that depends only on the end points. We obtain

expressions for configurations qjk and velocities q̇jk for j = 0, . . . , S−1, S ∈ N at time tjk ∈ [tk, tk+1]

by expressing tjk = tk + Cj
kh for Cj

k ∈ [0, 1] such that C0
k = 0, CS−1

k = 1 using

qjk = g1(t
j
k)qk + g2(t

j
k)qk+1, q̇jk = ġ1(t

j
k)qk + ġ2(t

j
k)qk+1, (2)

where h ∈ R is the time step. We choose functions

g1(t
j
k) = sin

(
u−

tjk − tk
h

u

)
(sinu)−1, g2(t

j
k) = sin

(
tjk − tk
h

u

)
(sinu)−1, (3)

to represent the oscillatory behavior of the solution, see [5, 6]. For continuity, g1(tk+1) = g2(tk) =
0 and g1(tk) = g2(tk+1) = 1 is required.

For any choice of interpolation used, we define the discrete Lagrangian by the weighted sum
Ld(qk, qk+1) = h

∑S−1
j=0 w

jL(qjk, q̇
j
k), where it can be easily proved that for maximal algebraic

order
∑S−1

j=0 w
j(Cj

k)m = 1
m+1 , where m = 0, 1, . . . , S − 1 and k = 0, 1, . . . , N − 1 see [5, 6].

Applying the above interpolation technique with the trigonometric expressions (3), following
the phase lag analysis of [5, 6], the parameter u can be chosen as u = ωh. For problems
that include a constant and known domain frequency ω (such as the harmonic oscillator) the
parameter u can be easily computed. For the solution of orbital problems of the general N -body
problem, where no unique frequency is given, a new parameter u must be defined by estimating
the frequency of the motion of any moving point mass [6].

3. Exponential integrators
We now consider the Hamiltonian systems

q̈ + Ωq = g(q), g(q) = −∇U(q), (4)

where Ω is a diagonal matrix and U(q) is a smooth potential function. We are interested in the
long time behavior of numerical solutions when ωh is not small.

Since qk+1 − 2 cos(hω)qk + qk−1 = 0 is an exact discretisation of (4), see [10, 11, 12], we can
consider the numerical scheme

qk+1 − 2 cos(hω)qk + qk−1 = h2ψ(ωh)g(φ(ωh)qk), (5)

where the functions ψ(ωh) and φ(ωh) are even, real-valued functions satisfying ψ(0) = φ(0) = 1,
see [1]. The resulting methods using the latter numerical scheme are known as exponential
integrators (for some examples of those integrators see [1, 7, 8, 9]).

3.1. Exponential high order variational integrators
If we now use the phase fitted variational integrator in (4) , the discrete Euler-Lagrange equations
(1) read

qk+1 + Λ(u, ω, h, S)qk + qk−1 = h2Ψ(ωh)g(Φ(ωh)qk), (6)
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Figure 1: Modified satellite solar system. Global error for the energy error using the proposed
family of exponential methods (red line) for S1 = 3, S2 = 5 and the ones that use S = 3 (blue
line).

where

Λ(u, ω, h, S) =

S−1∑
j=0

wj

[
ġ1(t

j
k)2 + ġ2(t

j
k)2 − ω2

(
g1(t

j
k)2 + g2(t

j
k)2
)]

S−1∑
j=0

wj

[
ġ1(t

j
k)ġ2(t

j
k)− ω2g1(t

j
k)g2(t

j
k)

] . (7)

Exponentially fitted methods using phase fitted variational integrators can be derived when

Λ(u, ω, h, S) = −2 cos(ωh). (8)

holds. Thus, phase fitted variational integrators using trigonometric interpolation can be
considered as exponential integrators.

4. Family of higher order exponential variational integrators for split potential
systems
We focus in the derivation of a family of exponential high order variational integrators for
systems containing slow and fast potentials as described in Section 1. Following [1, 2], we split
the potential energy of the Lagrangian to fast and slow terms, i.e.

L(q, q̇) = T (q̇)− V f (q)− V s(q), (9)

where T (q̇) = 1
2 q̇

TMq̇ is the kinetic energy of the system (M is a constant mass matrix). In
order to use different quadrature rules to approximate the contribution of each potential to the
action, we use different numbers of intermediate points for each potential. Denoting the numbers
of intermediate points for the slow and the fast potential by S1 and S2 respectively, we restrict
ourselves to choices that S1 < S2 (the choice S1 = S2 creates the exponential integrators of
Section 2).

Following Section 2 (see also [5, 6]) the discrete Lagrangian corresponding to (9) is

LS1,S2

d (qk, qk+1) = h

S1−1∑
j=0

wj
1

[
T (q̇(tjk))− V s(q(tjk))

]
−

S2−1∑
j=0

wj
2V

f (q(tjk))

 , (10)

where intermediate positions and velocities are given in (2) and (3), for S = S1 and S = S2
respectively.

IC-MSQUARE 2014 IOP Publishing
Journal of Physics: Conference Series 574 (2015) 012002 doi:10.1088/1742-6596/574/1/012002

3



5. Satellite solar system
As a numerical example, we choose the modified solar system with two planets (with masses
m1 = 1 and m2 = m3 = 10−2) and a satellite (m4 = 10−4) which moves rapidly around the mass
m2, see [1]. Considering initial configurations q1 = (0, 0), q2 = (1, 0), q3 = (4, 0), q4 = (1.01, 0)
and initial velocities q̇1 = (0, 0), q̇2 = (0, 1), q̇3 = (0, 0.5), q̇4 = (0, 0), the motion of the two
planets is nearly circular with periods close to 2π and 14π, respectively [1]. The problem is then
described by the Lagrange function

L(q, q̇) =
1

2

4∑
i=1

miq̇
2
i − V f (q)− V s(q), (11)

where

V s(q) =

4∑
i<j,(i,j)6=(2,4)

mimj

||qi − qj ||
, V f (q) =

m2m4

||q2 − q4||
. (12)

Figure 1 shows the comparison of errors in total energy of the system at t = 1 for time steps
h ∈ {10−4, 5 · 10−4, 10−3} for the proposed family of exponential methods (red line) for S1 = 3,
S2 = 5 and the ones that use S = 3 (blue line), see [6]. In that, it is clear that for all the step
sizes that are tested, the smallest energy errors are obtained when using the splitting technique
of Section 4.

6. Conclusions
A family of higher order exponential variational integrators for the numerical integration of
systems containing slow and fast potential forces is presented. For these methods, the discrete
Lagrangian in any time interval is defined as a weighted sum of the evaluation of the continuous
Lagrangian at intermediate time nodes. In order to use different quadrature rules for the
different potential terms, a splitting of their potential energy into a fast and a slow component is
addressed, and different numbers of intermediate points for each potential is used. Preliminary
numerical results for the case of the modified solar system, show better behavior of the proposed
simulation technique, when compared to the one derived without potential energy splitting.

[1] E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method,
Acta Numerica 12 (2003) 399.

[2] A. Stern and E. Grinspun. Implicit-explicit integration of highly oscillatory problems. SIAM Multiscale
Modeling and Simulation 7 (2009) 1779.
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