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Abstract. The paper focuses on an important problem related to the modern control systems,
which is the robust fault-tolerant control. In particular, the problem is oriented towards a
practical application to quadruple-tank process. The proposed approach starts with a general
description of the system and fault-tolerant strategy, which is composed of a suitably integrated
fault estimator and robust controller. The subsequent part of the paper is concerned with the
design of robust controller as well as the proposed fault-tolerant control scheme. To confirm the
effectiveness of the proposed approach, the final part of the paper presents experimental results
for considered the quadruple-tank process.

1. Introduction
Fault-Tolerant Control (FTC) systems can be divided into two of distinct classes [24], i.e.,
passive and active. Regarding the passive FTC [10, 11, 16, 3] systems, there is no need for fault
diagnosis, owing to the fact that they are robust to a set of predefined faults. Although, the
presented approach usually degrades the overall performance. Contrarily, the above-mentioned
passive FTC scheme, active one, reacts to faults actively. To maintain the system stability and
acceptable performance, controller reconfigures the control actions. The control system relies on
Fault Detection and Isolation (FDI) [9, 18, 17, 20, 23, 14, 13, 19] as well as an accommodation
technique [1] to achieve a challenging problem. As can be observed, the problems of FDI and
FTC are treated separately by most of the works, that exist in the literature. According to
the fact that perfect FDI and fault identification are impossible to achieve, there is always an
inaccuracy related to this process. Hence that, there is a need for an integrated FDI and FTC
schemes. In last decade, a number of books were focused on the emerging problem of the FTC. In
particular, the work[7] is mainly concentrated on fault diagnosis. Moreover, it provided general
rules for the hardware-redundancy-based FTC systems. The book [12] introduces the concepts of
FTC divided into active and passive structures. It also investigates the problem of stability and
performance of the FTC under imperfect (imprecise and delayed) fault diagnosis. In particular,
the authors consider (under a chain of some, not necessarily easy to satisfy assumptions) the
effect of an imperfect fault identification and a delayed fault detection. The proposed approach
deals with the fault diagnosis scheme separately, during the design, excluding real integration of
the fault diagnosis and the FTC. Plenty of practical case studies of FTC are treated in [15], i.e.,
a winding machine, a three-tank system, and an active suspension system. Unfortunately, the
FTC integrated with the fault diagnosis is not studied, in spite of the incontestable appeal of the
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proposed approach. The paper is organised as follows. Section 2 introduces a general scheme
of the proposed framework. Whilst section 3 describes the concept of the fault compensation
mechanism. The subsequent section 4 presents the robust control framework, while the final
part of the paper is concerned with an illustrative example.

2. A general description of system and fault-tolerant strategy
Let us consider a linear discrete-time system:

xf,k+1 = Axf,k +Buf,k +Bfk +Wwk, (1)

where xf,k ∈ X ⊂ Rn is the state vector, uf,k ∈ U ⊂ Rr stands for the input, fk ∈ Rr is the
actuator fault, and wk ∈ l2 denotes an exogenous disturbance vector, where:

l2 = {w ∈ Rn| ∥w∥l2 < +∞} , (2)

∥w∥l2 =

( ∞∑
k=0

∥wk∥2
) 1

2

. (3)

For the purpose of further deliberations, let us formulate the following condition [21]:

rank(B) = r, (4)

fk = fk−1 + v̄k, v̄k ∈ l2. (5)

The proposed control scheme is a combination of the fault compensation [22] and a classical
control scheme:

uf,k = −Kxk − f̂k−1, (6)

where:

• K is the H∞ controller designed to achieve robustness,

• f̂k−1 is the fault estimate, which compensates the effect of a fault,

The control strategy design boils down to solving a two set of problems:

• to design a robust controller K,

• to estimate the fault fk.

The proposed approach, described by (6) is presented in Fig. 1.

3. Fault estimation
The general objective of this section is to present the fault estimation technique. Thus, following
[6, 18], by computing

H = B+ =
[
BTB

]−1
BT , (7)

and then multiplying (1) by H, it can be shown that:

fk = Hxf,k+1 −HAxf,k − uf,k −HWwk, (8)

while its estimate can be given as:

f̂k = Hxf,k+1 −HAxf,k − uf,k, (9)
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Figure 1. Scheme of the proposed robust predictive FTC

with the associated fault estimation error

εf,k = fk − f̂k = −HWwk. (10)

Since the general framework for computing the fault estimate (9) is given, then its computational

feasibility can be verified. To obtain f̂k, it is necessary to have xf,k+1. Thus, the only choice to

compensate fk in (1) is to use f̂k−1. This determines the above-proposed control strategy:

uf,k = −f̂k−1 −Kxf,k. (11)

Taking into account (10) and (5), it can be shown that

f̂k = f̂k−1 +HW [wk −wk−1] + v̄k. (12)

Bearing in mind that all faults present in the real systems have a finite value and knowing that
wk, v̄k ∈ l2 it is evident that there exists vk such that:

f̂k = f̂k−1 + vk, vk ∈ l2. (13)

Thus, (11) can be written in an equivalent form, which will be used for further deliberations

uf,k = −f̂k + vk −Kxf,k. (14)

4. Controller design
The main objective of this section is to present the design procedure of the robust controller.
Substituting (14) into (1) gives

xf,k+1 = A1xf,k + [I −BH]Wwk +Bvk, (15)

with
A1 = A−BK. (16)
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Analysing (15), and in particular[
I −B

[
BTB

]−1
BT
]
Wwk = (17)

Wwk −B
[
BTB

]−1
BTWwk,

along with the fact that any vector Wwk ∈ col(B), where col(B) = {α ∈ Rn : α = Bβ} for
some β ∈ Rr can be written as Wwk = Bw̄k for some non-zero w̄k, leads (17) to

Bw̄k −B
[
BTB

]−1
BTBw̄k = 0. (18)

This significant simplification of (15) yields its new form:

xf,k+1 = A1xf,k +Bvk (19)

The general framework for designing H∞ robust controller is to determine the gain matrix K
such that

lim
k→∞

xf,k = 0 forvk = 0 (20)

∥xf∥l2 ≤ µ∥vk∥l2 forvk ̸= 0, x0 = 0. (21)

Thus, the problem is to find a Lyapunov function Vk such that:

∆Vk + xT
f,kxf,k − µ2vT

k vk < 0, k = 0, . . .∞, (22)

where
∆Vk = Vk+1 − Vk, (23)

and
Vk = xT

f,kPxf,k. (24)

Indeed, if vk = 0 then (22) boils down to

∆Vk + xT
f,kxf,k < 0, k = 0, . . .∞, (25)

and hence ∆Vk < 0, which leads to (20). If vk ̸= 0 then (22) yields

J =

∞∑
k=0

(
∆Vk + xT

f,kxf,k − µ2vT
k vk

)
< 0, (26)

which can be written as

J = −V0 +

∞∑
k=0

xT
f,kxf,k −

∞∑
k=0

µ2vT
k vk < 0, (27)

Knowing that V0 = 0 for xf,0 = 0, equation (27) leads to (21). For (24) the inequality (22) is

∆V + xT
f,kxf,k − µ2vT

k vk < 0, (28)

with

∆V =xT
f,k

[
AT

1 PA1 − P
]
xf,k+

xT
f,k

[
AT

1 PB
]
vk+

vT
k

[
BTPA1

]
xf,k+

vT
k

[
BTPB

]
vk. (29)
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Thus, it can be shown that (28) is equivalent to[
AT

1 PA1 + I − P AT
1 PB

BTPA1 BTPB − µ2I

]
≺ 0. (30)

Lemma 1. The following statements are equivalent [4, 2, 5]

(i) There exists X ≻ 0 such that
V TXV −W ≺ 0 (31)

(ii) There exists X ≻ 0 such that [
−W V TUT

UV X −U −UT

]
≺ 0. (32)

The following theorem presents the main tool of this section

Theorem 1. For a prescribed fault estimation uncertainty and disturbances attenuation level
µ > 0 for the xf,k, the H∞ controller design problem for the system (1) is solvable if there exist
U , N and P ≻ 0 such that the following condition is satisfied: I − P 0 AU −BN

0 −µ2I UTBT

UTAT −NTBT UB P −U −UT

 ≺ 0, (33)

with N = KU .

Finally, the design procedure boils down to solving (33) with respect to U , N and P ,
subsequently gain matrix of the controlled can be calculated as follow:

K = NU−1. (34)

5. Case study
To verify the proposed approach, it was implemented for the quadruple-tank process. A
schematic diagram of the process is presented in Fig. 2. The goal is to control the water
level in tank 1, 2 and to estimate the faults for pump 1 and pump 2, respectively. The system
can be described by following equations [8]:

dh1
dt

= − a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

v1 (35)

dh2
dt

= − a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

v2 (36)

dh3
dt

= − a3
A3

√
2gh3 +

(1− γ2)k2
A3

v2 (37)

dh4
dt

= − a4
A4

√
2gh4 +

(1− γ1)k1
A4

v1 (38)

(39)

where Ai is cross–sectional area of the tank, ai stands for cross–section of the outlet orifice,
hi is water level, vi is voltage applied to pump, γi are determined from how the valves are
set prior to an experiment, g is the acceleration of gravity. The numerical values of above
parameters are as follows: A1 = A3 = 28[cm2], A2 = A4 = 32[cm2], a1 = a3 = 0.071[cm2],
a2 = a4 = 0.057[cm2], g = 981.0[cm/s2]. The model was linearised around the steady-state
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Figure 2. The quadruple-tank process [8]

h01 = 12.4[cm], h02 = 12.7cm, h03 = 1.8cm, h04 = 1.4cm, k1 = 3.33[cm3/V s], k2 = 3.35[cm3/V s],
γ1 = 0.7[cm3/V s], γ2 = 0.6[cm3/V s] and discretized by using Euler method with the sampling
time Ts = 0.1s. The discrete time system is given by:

xf,k+1 = Axf,k +Buf,k +Bfk +Wwk, (40)

with

A =


0.9984 0 0.0042 0

0 0.9989 0 0.0033
0 0 0.9958 0
0 0 0 0.9967

 , B =


0.0083 0

0 0.0062
0 0.0048

0.0031 0

 ,

W =


0.0500 0 0 0

0 0.0500 0 0
0 0 0.0500 0
0 0 0 0.0500

 ,

and the exogenous disturbance input

wk ∼ N (0, 0.12I). (41)

The robust controller was designed with (33) and µ = 0.9. The obtained robust controller K is
as follows:

K =

[
106.2134 3.5115 −4.1539 36.5174
−0.0436 112.2489 62.4471 0.4812

]
Figure 3 presents the system evolution for the fault-free case. It can be seen that the state
converges to the required setpoint for the following initial conditions xf,0 = [0.03, 0.04, 0.01, 0.05].
For further comparative study, two control strategies are employed:
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Figure 3. Set point, state x1 and x2 (dash line) (for k = 0, . . . , 2500)

Without FTC
uf,k = −Kxf,k. (42)

With FTC
uf,k = −f̂k−1 −Kxf,k. (43)

Moreover, three fault scenarios are considered

S1: 5% performance decrease of the first actuator:

fk,1 =

{
−0.05uf,k 1500 ≤ k ≤ 1600,

0 otherwise

fk,2 = 0.

S2: 10% performance decrease of the first actuator:

fk,1 =

{
−0.1uf,k 1500 ≤ k ≤ 1600,

0 otherwise

fk,2 = 0.

S3: 5% and 10% performance decrease of the first and second actuator, respectively:

fk,1 =

{
−0.05uf,k,1 1500 ≤ k ≤ 1600,

0 otherwise

fk,2 =

{
−0.1uf,k,2 1500 ≤ k ≤ 1600,

0 otherwise

The results presented in Figs. 4–7, show the system performance with and without FTC
strategy. Fault scenarios S1–S3 show the operation of the system for different actuator fault
values. The control strategy without FTC provides the worst results for all considered fault
scenarios S1–S3. The control strategy without FTC, which being a robust control only, does not
consider any information about faults. Thus it is impossible to be realise the suitable recovery
actions, while the control strategy with FTC gives better significantly better performance of the
system.

European Workshop on Advanced Control and Diagnosis IOP Publishing
Journal of Physics: Conference Series 570 (2014) 082002 doi:10.1088/1742-6596/570/8/082002

7



1500 1600 1700 1800 1900
10

10.5

11

11.5

12

12.5

13

x 1

Discrete time
1450 1500 1550 1600 1650
−8

−6

−4

−2

0

2

4

Discrete time

f k

Figure 4. Performance of the system with (solid line) and without FTC (dashed line) (left)
and fault (solid line) and its estimate (dashed line) (right) for scenario S1
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Figure 5. Performance of the system with (solid line) and without FTC (dashed line) (left)
and fault (solid line) and its estimate (dashed line) (right) for scenario S2
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Figure 6. Performance of the system with (solid line) and without FTC (dashed line) (left)
and fault (solid line) and its estimate (dashed line) (right) for scenario S3 (first actuator)
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Figure 7. Performance of the system with (solid line) and without FTC (dashed line) (left)
and fault (solid line) and its estimate (dashed line) (right) for scenario S3 (second actuator)

6. Conclusions
The main objective of the paper is to propose a robust fault-tolerant control scheme for a
non-linear discrete-time systems. The achieved results were divide into the following points:

• minimisation the effects of exogenous disturbances and present fault estimation strategy,
through the H∞ approach,

• development the procedure for: fault estimation, fault compensation with robust controller,

• verification the proposed approach on the quadruple-tank process.

The proposed approach can be efficiently implemented to real-time system. The offline
computations boil down to solving linear matrix inequalities. While the on-line computation
boils down to calculate the fault and control signal. The proposed approach was applied to
the quadruple-tank process. The achieved results clearly exhibit the high performance of the
proposed scheme.
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