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Abstract.
In this paper, a generic physically-based modeling framework for encoder type speed sensors

is derived. The consideration takes into account the nominal fault-free and two most relevant
fault cases. The advantage of this approach is a reconstruction of the output waveforms in
dependence of the internal physical parameter changes which enables a more accurate diagnosis
and identification of faulty incremental encoders i.a. in wind turbines. The objectives are to
describe the effect of the tilt and eccentric of the encoder disk on the digital output signals and
the influence of the accuracy of the speed measurement in wind turbines. Simulation results
show the applicability and effectiveness of the proposed approach.

1. Introduction
Due to the increasing dimensions and complexity of wind turbines, requirements regarding safety
and availability continually rise. In particular, the increase of the equipment complexity caused
an increase of probability of failure of individual components. Hence, in the recent years several
approaches and methods have been proposed to detect and isolate faults in wind turbines on
the system level which have been successfully applied in wind turbine simulation. A survey is
given by the summary of a wind turbine FDI (fault detection and isolation) competition [1],
where several actuator and sensor faults had to be detected within a pre-defined benchmark
model [2]. In these studies, to prevent the loss of generality, a few sensor fault cases have been
distinguished such as additive, scaling and fixed value faults. All of these are signal-based,
which means the faults are modeled by event-triggered sensor signal adjustment in terms of
signal addition, gain and compensation. Therefore the physical cause of faults in the sensor
components are not previously considered. However, this information is useful to quantify the
probability of occurrence and improved the fault reconstruction, both on the component and
system level.
In this paper, a novel physically-based generic model of an incremental encoder, frequently
used as rotor or generator speed sensor in wind turbines, is presented. In contrast to [2] a
detailed mathematical model that takes into account the nominal case and systematic faults
are proposed. Here, two relevant fault cases are studied in detail: First, the tilt of the encoder
disk and second, the eccentric of the axis of rotation. The advantage of this approach is a
reconstruction of waveforms in dependence of physical parameter changes which enables a more
accurate fault identification.
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This paper is organized as follows: In Section 2 the main components and control functions which
have important influence on the performance of wind turbines, i.e. the energy production, are
briefly described. Further, commonly used encoder types and their operating principles are
presented. Sections 3 and 4 contain the main parts of this work. In Section 3 a generic white-
box model framework for encoder type sensor systems is derived. The objective is to describe
the effect of the tilt of the increment disk, the offset of the rotation axis on the digital output
signals and the influence of the accuracy of the speed measurement. In Section 4, simulation
studies including the nominal fault free and two common sensor fault cases are presented.

2. Sensors for wind turbine control
2.1. Functions of wind turbine control system
State of the art wind turbines in the 0.5 MW to 8 MW class have three major components which
have important influence on the performance, i.e. the energy production of the system. First
of all the nacelle including the rotor has to turn into the wind direction as good as possible.
This function is called yaw and includes electrical drives which rotate the nacelle according to
the signal of a wind measuring device (see Figure 2). The second function is called pitch and
means the positioning of the rotor blades. Depending on the wind speed the rotor blade has to
be adjusted in a way that a constant rotational speed is achieved (see Figure 1). Finally the
rotor speed respectively the generator speed has to be determined (see Figure 3).
All these functions have performance as well as safety aspects. If the rotor speed exceeds a
certain maximum value serious damage can happen, even the destruction of the wind turbine.
Therefore, a safe shutdown function must be activated in case of exceeding the critical value.
On the other hand the stand-still position of the rotor must be detected to enable safe access of
service personnel.
If the nacelle turns with changing wind conditions there is a limit of revolutions into the same
direction. A typical value is 3 to 4 turns into one direction. Exceeding this limit would cause the
destruction of the cables which connect the power generation in the nacelle with the converters
or other devices at the ground. Finally the determination of the blade position is crucial for the
shutdown. Since up to date Mega Watt machines have rotors of huge size and weight like 20
tons or more, the full stop cannot be achieved by brakes any more. The rotor is controlled by
turning the blades into a stall position to reduce the speed down to a value where the brakes
could be safely applied.
Looking at all these functionalities it becomes obvious that a precise and reliable measuring of
speeds and positions is a crucial aspect in the whole construction.

2.2. Encoder types for position and speed measurement
Traditionally there are two technical solutions to achieve this measuring task. In some cases
inductive sensors are used to detect holes in a metal ring. By counting these incremental signals
a control system could determine the actual speed but typically not a position. Therefore,
incremental and absolute encoders have become state of the art, since they offer both types of
signal and additionally a better resolution and precision. Because of the different requirements
in the individual applications, there are a number of technologies and variants existing to provide
solutions for each and every case:

• Incremental encoders with analogue or digital output (see Figure 4)

• Absolute encoders (single-turn; multi-turn)

• Absolute multi-turn encoders with

– mechanical counter
– battery buffered memory

• Absolute multi-turn encoders gearless, without battery by using Wiegand effect for counting
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Figure 1. Shows the rotor of a wind turbine. The blade angle is adjusted according to the
wind conditions to control the rotor speed.

Figure 2. The nacelle is turned into the
wind by electrical drives. The position of
the nacelles must be determined and also
the number of turns in either direction to
prevent cable destruction.

Figure 3. The rotor speed is measured
directly at the low speed shaft and
also at the fast moving generator shaft

• Absolute encoders with

– fieldbus interfaces (CAN, Profibus, Profinet, EtherCAT, etc.)
– magnetic, optical, capacitive or inductive working principle
– non-contact magnetic or inductive encoder with external pole wheel.

Absolute encoders deliver position signals instead of incremental signals. The encoder disk
contains a Gray Codes scale instead of simple one to one black and transparent transmissions.
As an option absolute encoders can be executed as multi-turn versions, which keep counter
values if the rotation exceeds 360 degrees several times. Nowadays optical systems are more
and more replaced by magnetic encoders. The advantages of optical encoders were two-fold.
Number one they could reach much higher rotational speed and number two they could deliver
a much higher resolution. Newest developments have made at least the second point almost
marginal. The resolution of magnetic encoders can reach up to 18 Bit, which lifts them to a
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Figure 4. Typical arrangement of an
incremental encoder. In case of an
optical sensing system the encoder disk
can be made of glass, plastic or metal.
Two transmitter/receiver units detect the
signal for the A and B signal. A third unit
scans the zero position.

Figure 5. Comparison between two
different encoder constructions. Both are
multi-turn absolute encoders. One type
shows an optical sensing system with a
mechanical gear to count and store the
multi-turn value. The other is a complete
magnetic system with Wiegand wire for
the multi-turn function.

comparable level as optical encoders. Since high revolutions do not take place in wind turbines
but harsh environmental conditions became much more of an issue, magnetic encoders have
become increasingly popular. The comparison in Figure 5 cearly shows that the magnetic
version of a multi-turn encoder requires only a minimum of components and much less than the
optical version with mechanical multi-turn unit. In addition to the increased robustness this has
a significant influence on the life time calculation which shows in this specific case an advantage
with a factor of 10.
Encoders are typically electro-mechanical devices (see Figure 6a). The mechanical parts are
usually bearings. They are specifically subject to wear and tear. The calculation of the life-
time of bearings is extremely difficult, because it depends heavily on external influences, such
as temperature, kind of operation (low or high speed, long stand-still periods), type of grease
or axial and radial axis loads. In most cases these environmental influences cannot clearly be
specified. Therefore, there is a move in the direction of encoders without mechanical parts,
respectively parts which are moving with mechanical contact.
In this case the magnet impulse unit is built in form of a ring which is placed outside the encoder
detecting unit. This unit scans the magnetic field on a distance and is not touching anything (see
Figure 6b). The detecting unit does not incorporate any moving mechanical parts, because it is
sitting off-axis. One disadvantage of this construction is the small dimensional tolerance between
the pole wheel and the sensor, which makes the installation in heavily vibrating machines
impossible.

2.3. Accuracy of increments delivered by the output of an incremental encoder
There are various reasons why the signal of an incremental encoder is not 100% precise. In
the state of the art products the electronic components are of sufficient quality and reliability.
Usually limitations of the signal quality are caused by the mechanical construction. Especially
manufacturing tolerances of different kind, such as eccentric or tilted mounting of the encoder
disk or dimensional differences between the individual increments will cause limitations in the
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Figure 6. A conventional encoder with ball bearings versus a non-contact magnetic encoder
with pole wheel.

Figure 7. An encoder disk with 1024
increments and two channels (A + B) plus
the zero track delivers 4 signal edges per
increment. The T/4 measuring step is called
the Least Significant Bit (LSB).

Figure 8. Measurement of the integral
nonlinearity. The graph shows a maxi-
mum deviation of 1.71 LSB (see Figure 7 )

achievable precision of the encoder signal.
There are two measurements which are typically executed to determine the accuracy of an
incremental encoder. They are called differential and integral nonlinearity:

• The differential nonlinearity describes the dimensional deviation from each increment
compared to the ideal model.

• The integral nonlinearity describes the summarized deviation over one revolution, which
means the precision to reach exactly the same position after 360 degrees of rotation.

Taking the results shown in Figure 8 as an example the achievable accuracy would be 0.042%.
Quiet often the encoder is coupled via a pinion wheel to the shaft or the drive. If such a
pinion and the yaw bearing have a teeth ratio of 16 : 256 with a bearing diameter of 3 m,
the positioning precision would be 0.063 m. If the same calculation would be applied on the
revolution per minute of a rotor it would mean that at a typical value of 20 rpm the precision
of the measurement would be 0.13 rpm.
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3. Physically-based modeling of rotor/generator speed sensors
3.1. Model assumptions
As shown in Figure 4 an incremental encoder consists of light sources as transmitter, a receiver
such as photodiodes or phototransistors, a rotating encoder disk and a stationary aperture. It
is essential to mention that the modeling framework based on following assumptions:

(i) The aperture size A is taken as identical to the photosensitive surface of the sensor.

(ii) A pure ray optics is assumed. That is the light propagates in straight lines from the
transmitter through the aperture to the receiver.

(iii) A homogeneous intensity distribution of the radiation causes a voltage signal that is
propotional to the current aperture size A

u =
A

Amax
(1)

with u ∈ [0, 1] is a normalized voltage signal.

3.2. Nominal fault-free case
The current voltage signal or aperture size for a fixed axis results from the intersection of the
aperture and encoder increment and can be determined by

A =

ϕ=ϕ2∫
ϕ=ϕ1

r=ra∫
r=ri

r dr dϕ =
1

2
(r2a − r2i ) (ϕ2 − ϕ1) (2a)

where ri and ra are the constant radii of a encoder increment of one track (Figure 9), ϕ is the
variable of integration and is limited by the circular arc of each increment with the bounds ϕ1

and ϕ2. Because the increment is not always completely over the aperture, the following cases
have to be distinguished:

(i) Increasing sectional area

A =

ϕ=α2∫
ϕ=γ1

r=ra∫
r=ri

r dr dϕ (2b)

(ii) Constant sectional area

A =

ϕ=γ2∫
ϕ=α1

r=ra∫
r=ri

r dr dϕ (2c)

(iii) Decreasing sectional area

A =

ϕ=α2∫
ϕ=α1

r=ra∫
r=ri

r dr dϕ (2d)

(iv) No sectional area
A = 0 (2e)

where α1, α2 are the fixed aperture angles and γ1, γ2 are the angle of orifice area of one incre-
ment. For illustrating, the encoder geometry, all coordinates and variables are shown in Figure 9.

In the next step, we have to take into account the rotation of the encoder disk for the nominal
case. For this purpose, without loss of generality, it is shortly and conveniently to consider a
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Figure 9. Geometry of aperture and increment disk for the fault-free case

rotating aperture instead of a rotating encoder disk. Using this approach, the aperture angle α2

is equal to the current encoder disk angle φ. Therefore, the integral bounds can be determined
by

α2 = φ

α1 = φ− βB .
(3)

where βB is the orifice angle of the aperture. For the first increment this result to

γ1 = (i− 1) βI

γ2 = γ1 + βS

γ3 = γ1 + βI

(4)

with βS as angular width of increment orifice and βI as angular width of increment (2 · βS).
The expression for γ1 can be extended to i ∈ {2, 3, ...} increments, see Figure 9. Further details
can be found in [3]. Thus for each angular position the signal level is determined by previous
equations (2) and (4).

3.3. Faulty case: Tilt encoder disk
Due to the manufacturing process the encoder disk can be tilt, so that disk and aperture are
not parallel to each other. Then, the distance between disk and aperture is no longer constant
and depends on the encoder disk angle φ. The tilt angle is denoted by ϑ and is related to the
vertical disk position illustrated in Figure 10.
The starting point of the modeling approach is the parallel projection of an increment on the
aperture plane. Instead of circles with constant radii ri and ra , a tilt encoder disk causes ellipse
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Figure 10. Tilt encoder disk

shaped projection of the increment edges on the aperture plane. This can be described by the
following angle-dependent radii based on elliptic equation

ri(ϕ) =
rAirBi√

(rAi sinϕ)2 + (rBi cosϕ)2
, ra(ϕ) =

rAarBa√
(rAa sinϕ)2 + (rBa cosϕ)2

with

rAi = ri , rBi = ri cosϑ ,

rAa = ra , rBa = ra cosϑ
(5)

where rA is the minor and rB is the main axis of the ellipse. Taking this into account we get
the integral representation to calculate the aperture size

A =

ϕ=ϕ2∫
ϕ=ϕ1

r=ra(ϕ)∫
r=ri(ϕ)

r dr dϕ =

ϕ=ϕ2∫
ϕ=ϕ1

1

2
r2
∣∣∣∣ra(ϕ)
ri(ϕ)

dϕ =
1

2

ϕ=ϕ2∫
ϕ=ϕ1

r2a(ϕ)− r2i (ϕ) dϕ .

After analytical calculation of this integral we obtain the aperture size as a function of ϑ

A(ϑ) =
1

2

(
arctan

(
1

cosϑ
tan(ϕ2)

)
−arctan

(
1

cosϑ
tan(ϕ1)

))(
ra

2 cos(ϑ)− ri2 cos(ϑ)
)
. (6)

3.4. Faulty case: Eccentric axis of rotation
Due to manufacturing inaccuracy or age-related wear, it may be occur that the rotation axis
is not exactly in the center of the increment disk. Then, similarly as in the previous case, ri
and ra are not constant, and depending on the angle φ. In the following, it is assumed that
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Figure 11. Eccentric axis of rotation

the displacement of the rotation axis can be described by ∆x (see Figure 11) and the angle-
dependent radii are denoted by r̃i and r̃a. Applying the law of cosines to calculate r̃i and r̃a, we
get

ri
2 = r̃2i (ϕ) + ∆x2 − 2 r̃i(ϕ) ∆x cos(ϕ) ,

ra
2 = r̃2a(ϕ)2 + ∆x2 − 2 r̃a(ϕ) ∆x cos(ϕ) ,

and changed to the interesting quantities

r̃i(ϕ) = ∆x cos(ϕ) +

√
ri2 − (∆x sin(ϕ))2 ,

r̃a(ϕ) = ∆x cos(ϕ) +

√
ra2 − (∆x sin(ϕ))2 .

(7)

As for the previous case, the aperture size is

A =

ϕ=ϕ2∫
ϕ=ϕ1

r=r̃a(ϕ)∫
r=r̃i(ϕ)

r dr dϕ =
1

2

ϕ=ϕ2∫
ϕ=ϕ1

r̃2a(ϕ)− r̃2i (ϕ) dϕ (8)

After substituting (7) in (8) and some calculation we get the aperture size as a function of the
displacement of the rotation axis

European Workshop on Advanced Control and Diagnosis IOP Publishing
Journal of Physics: Conference Series 570 (2014) 072008 doi:10.1088/1742-6596/570/7/072008

9



A(∆x) =
1

2

(
∆x2 sin(ϕ2)

(√(
ra2

∆x2
− 1

2
sin2(ϕ2)

)
+

√(
ri2

∆x2
− 1

2
sin2(ϕ2)

))

− ∆x2 sin(ϕ1)

(√(
ra2

∆x2
− 1

2
sin2(ϕ1)

)
+

√(
ri2

∆x2
− 1

2
sin2(ϕ1)

))

+ ra
2

arctan

 ∆x sin(ϕ2)√
ra2 2∆x2 sin2(ϕ2)

− arctan

 ∆x · sin(ϕ1)√
ra2 2∆x2 sin2(ϕ1)



− ri2
arctan

 ∆x sin(ϕ2)√
ri2 · 2∆x2 sin2(ϕ2)

− arctan

 ∆x sin(ϕ1)√
ri2 2∆x2 sin2(ϕ1)


+ (ϕ2 − ϕ1) (ra

2 − ri2)

)
. (9)

4. Impact of sensor faults on measurement accuracy
4.1. Signal processing
Finally, the impact of the fault cases on the sensor measurement accuracy are considered. First,
the signal processing methods must be explained: In the first signal processing step, the raw
analog signal A is transformed into a digital one by a comparator circuit. This digital signal is
denoted by Ad. In order to ensure a high accuracy, sensor manufacturers use different circuit
solutions for the same problem, which will not be discussed here. Then, in the second step, the
current speed value n is calculated from the digital signal Ad. Two methods are commonly used:

(i) Counting the signal edges during a constant gate time Tg.

(ii) Measuring the time tA that elapses between two successive signal edges.

The first method can be described by the expression

n =
Ns

Tg N
(10)

with n as the speed value, N as the number of increments on the encoder disk and Ns as the
number of counted signal edges during the constant gate time Tg. The second method is given
by

n =
1

tA N
(11)

where tA is the elapses time between two successive signal edges.

4.2. Impact of tilt encoder disk on measurement accuracy
The effects of a twisted encoder disk are illustrated by an example using a reasonable tilt angle
ϑ = 0.75◦. For realistic results the two common methods for speed calculation (10) and (11)
are taken into consideration. The speed variation over a sensor revolution with N = 1024
using (10) where Tg = 10 ms is shown in Figure 12. For comparison, the same faulty case is
considered with the second signal processing method (11) (see Figure 13). With both methods
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Figure 12. Effect on measured speed curve caused by a tilt encoder disk ϑ = 0.75◦ at true
speed n0 = 2.0 s−1 using (10) where Tg = 10 ms and N = 1024
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Figure 13. Effect on measured speed curve caused by a tilt encoder disk ϑ = 0.75◦ at true
speed n0 = 2.0 s−1 using (11) where N = 1024

it is clearly illustrated, that the simulated measured curves vary significantly about the true
value n0 = 2.0 s−1. The influence of the calculation methods are also clearly visible. Further
simulations have shown, that the peak-to-peak value of n-curve increases with increasing tilt
angle. But a purely analytical description of this relationship has not been derived yet.

4.3. Impact of eccentric rotation axis on measurement accuracy
Furthermore, the effects of a eccentric rotation axis are illustrated by a displacement of
∆x = 0.1 mm. As before, the two different methods for speed calculation are taken into
consideration. The variation of the measured speed curve caused by displacement of the rotation
axis calculated with (10) is shown in Figure 14. For comparison, the same fault is considerd
with the second signal processing method (11). The simulation result is shown in Figure 15.
Also in this case, it is illustrated that the simulated measured curves vary significantly about
the true value n0 = 2.0 s−1 influenced by a displacement of the rotation axis.

5. Conclusion and current work
In this paper, a generic physically-based model for encoder type speed sensors with an optical
system was presented. Using the classical beam optics, the effect of tilt and eccentric of the
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Figure 14. Effect on measured speed curve caused by displacement of the rotation axis
∆x = 0.1 mm at true speed n0 = 2.0 s−1 using (10) where Tg = 10 ms and N = 1024
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Figure 15. Effect on measured speed curve caused by displacement of the rotation axis
∆x = 0.1 mm at true speed n0 = 2.0 s−1 using (11) where N = 1024

encoder disk were analytically described as a function of the tilt angle and the displacement of the
encoder axis. The influence of different methods of speed calculation was also investigated. On
the basis of simulation studies using the analytical model the effects of non-nominal parameter
values on the sensor speed signal could be made clearly visible. In current work, reduced models
are derived with the objective to integrate these into the benchmark models [2] and [4] (based
on [5],[6]) for a more realistic sensor failure scenarios for fault diagnosis of wind turbines.
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