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Abstract.  This article describes the on-going results of a fault diagnosis benchmark for a 
cryogenic rocket engine demonstrator. The benchmark consists in the use of classical model-
based fault diagnosis methods to monitor the status of the cooling circuit of the MASCOTTE 
cryogenic bench. The algorithms developed are validated on real data from the last 2014 
firing campaign (ATAC campaign). The objective of this demonstration is to find practical 
diagnosis alternatives to classical redline providing more flexible means of data exploitation 
in real time and for post processing. 

1 Introduction 
Model-based fault detection methods are one of the most common diagnostic technics used in 
process monitoring for a wide range of applications (ex. nuclear, aeronautics, chemical etc.) [1], 
[2],[3]. A mathematical model represents the knowledge of the process and it is used to produce 
diagnosis flags based on deviations of parameters from their nominal expected values. These 
deviations (residuals) can be obtained from the evaluation of characteristic parameters of the system 
as in parameter estimation methods [4] or directly from sensor output estimation as in Kalman 
filtering approaches [5]. Finally statistical tests on the residuals are performed to obtain robust 
diagnosis flags (i.e. CUSUM test [6], [14]). 
In the field of rocket engines, fault detection and diagnosis technics are called health monitoring 
systems (or health management systems if reconfiguration actions are possible). So far rocket engine 
diagnosis has been performed mostly via simple redlines over preselected sensors (fixed threshold). 
This approach has been preferred as it is simple and requires low computation effort. On the other 
hand its drawbacks are the high number of sensors and thresholds to be set for each targeted engine 
operating point leading to higher possibility of human errors and unjustified firing aborts. During the 
last decades, an important number of researches [7] have been dedicated to the improvement of the 
diagnosis methods for applications at test bench or during flight [8][9][10][11]. The difficulty of 
these systems is the complexity of the processes to monitor and the need for reliable diagnosis with 
short reaction times (from 10 milliseconds up to a few seconds). 
The aim of this work is to find new possible alternatives to simple redline checking for the cryogenic 
rocket engine demonstrator MASCOTTE. Two diagnosis methods have been developed here, 
namely parameter identification and Kalman filtering. These methods have been implemented and 
tested on real data from the latest firing campaign of 2014 for the bi-dimensional nozzle ATAC [12]. 
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2 Mascotte description 
MASCOTTE test bench was designed to study cryogenic rocket combustion and nozzle flow 
performances. It was built in 1994 from the cooperation of CNES and ONERA. Several version of 
the hardware were developed during the years for different purposes. The most recent version called 
ATAC is used to analyse rocket nozzle performances. The combustion chamber fed with gaseous 
hydrogen and oxygen is terminated by a 2D nozzle. The hardware has been equipped with a water 
cooling circuit in order to withstand high mixture ratio and pressure in the chamber and to operate 
for longer duration (around 60s). Figure 1 shows the chamber section and the bi-dimensional nozzle 
[12]. 

 

Figure 1 Combustion and nozzle section with water cooling system 
(yellow circuit for the chamber part and blue circuit for the nozzle 
part) 

The bench is monitored and controlled via three main computers. The initial diagnosis system is 
based on independent redlines on relevant parameters. In particular for the water circuit all pressures, 
temperatures and mass flows are monitored and a test stop is issued whenever one or more of these 
parameters cross a redline for more than a minimum time. The redlines are set manually by the 
experts and validated via a dedicated bench firing before each test campaign. The bench is in open-
loop control and only test abort over redlines or nominal test stop are possible. 
Figure 2 shows the water circuit architecture of the bench. 

 

Figure 2 Test bench water cooling circuit: M = inlet chamber 
section, V1 to V3 = middle chamber sections, T = nozzle. 
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Figure 3 Chamber and nozzle section: water cooling detail. 
3 Fault diagnosis methods 
The selected methods for the diagnosis demonstration are classical model-based technics [1], [3]: 
- Least-square parameter identification  
- Kalman filter 
An analysis of the possible modelling of the cooling system was performed and a simplified model 
was set up for describing the main processes in each branch of the water circuit. This model is the 
basis of the diagnosis strategy. 
4 Water cooling system model 
The chamber or nozzle section in Figure 3 is modelled through an inlet cavity, an orifice and an 
outlet cavity. Figure 4 shows the corresponding zones. Cavity 1 corresponds to the inlet volume of 
the cooling circuit, the orifice is the connecting tube and cavity 2 the water volume flowing on the 
chamber wall and heated up by the combustion process. This scheme can be applied to any other 
segment of the water circuit: the three chamber segments (V1 and V2, V3 in Figure 2) and the bi-
dimensional nozzle part (T in figure 2). The only difference is in the parameter of the model 
depending on the geometry.  

 
Figure 4 Water cooling modelling 

 

This modelling approach is directly derived by the CNES software CARMEN [18] which is used for 
rocket engine systems modelling. It was extensively validated on different engines and propulsive 
systems. The idea here is to build a simple and generic model, but representative of the system 
dynamics and generic enough to be applicable to different system parts. The governing equations 
obtained from conservation laws applied to each element are given in equations (1), (2) and (3). 
Cavity 1: ����� � ���� 	 ��
� ∙ 
���  ����� � 1� ∙ �� ∙ ������� 	 ��
��� � �������� 
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Liquid orifice:  �� 	 �� � ����� ∙ �� 
� � ��� 	 ���� ∙ ��� (2)  

Cavity 2: ����� � ���� 	 ��
� ∙ 
���  ����� � 1� ∙ �� ∙ ������� 	 ��
�� � � �������� 
 

(3)  

List of variables: ��: pressure in cavity 1 (Pa) ��: pressure in cavity 2 (Pa) �� : pressure drop coefficient (non dimensional) � : water density (kg/m^3) 
 : speed of sound in water (m/s) ��: specific heat of water at constant volume �� : volume of cavity 1 (m^3) �� : volume of cavity 2 (m^3) 
S : cross sectional area for the orifice element (m^2) � � ��
 � ��� : mass flow through the orifice element / outlet mass flow from cavity 1/ inlet mass 
flow to cavity 2 (kg/s) ��� : cavity 1 inlet mass flow (kg/s) ��
 : cavity 2 outlet mass flow (kg/s) �� : temperature in cavity 1 (K) �� : temperature in cavity 2 (K) ��� : heat flux on cavity 1 (W) ��� : heat flux on cavity 2 (W) 
Let consider first equations (1), (2) for establishing a model of pressure and mass flow evolution. 
Assuming ��
 � ��� the resulting equation, for each branch of the circuit is equation (4) below.  
 ����� � ���� 	 ���� ∙ ��� 	 ��
� ∙ 
��� (4)  

4.1 Pressure drop coefficient  
The pressure drop coefficient, �� is calculated via a Blasius correlation [13] applicable for Reynolds 
number higher than 5000. This was verified on past nominal firing campaign as shown in Figure 5. 
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Figure 5 Reynolds number in water cooling chamber branch 
for a nominal Mascotte firing campaign (time in 

milliseconds) 
The correlation is expressed in equation (5). 
 �� 	 �� �  ∙ !"# ∙ � ∙ $�2   � 0.3164	,-./.�0 

 

(5)  

With: ,- � 12∙�∙34   Reynold number (non-dimensional) $ = average speed in flow cross section (m/s) 5 = dynamic viscosity (kg/(s m)) "#= characteristic dimension cross flow, hydraulic diameter  !  = characteristic length of the flow 
Rewriting the expression above with the mass flow rate expression  � � � ∙ $ ∙ �, we obtain: 

6 � 0.3164 ∙ � �7"4 ∙ 5�
./.�0 ∙ !" ∙ 12 

 

(6)  

Introducing the parameter  8 � 0.3164 ∙ 9 �:;2< ∙4=./.�0 ∙ >12 ∙ ��   and the derivative of state variable 

��� �	?@A?B   in equation (4), we obtain equation (7).  

 

��� � 
��� ∙ C	�� ��� � ��/.��0��� ∙ �� ∙ ��8 ∙ D����� 	 �����E (7)  

It should be noted that this model is only valid when P1>P2, otherwise, a flag could be raised. 

4.2 Final water cooling system model 

With additional constant parameters F � GAH 	, � � I3∙JAK LMA, the final model is expressed in equation 

(8).  ��� � F ∙ I	����� � � ∙ ��/.��0��� ∙ D����� 	 �����L (8)  

This equation will be applied to the chamber or the nozzle sections of the water cooling circuit with a 
measured mass flow either at outlet or inlet. 

R
e 

Time steps 
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5 Geometrical evaluation of equation parameters b, c and M 
Geometrical data of each part of the water cooling circuit makes it possible to determine the 
numerical values for parameters c and b in equation (8). The obtained values are characteristic 
quantities of the given water circuit section supposed to be always constant.  
The practical difficulty in their evaluation from their analytical expression is that the volumes of the 
cavities indicated in Section 4 cannot be precisely identified and depend also on the measurement 
location. The following evaluations constitute thus first guesses including measurement and 
modelling uncertainty: they will be verified on real data for nominal cases. For diagnosis purpose the 
reference value can also be identified through the method in Section 6. 

Table 1. First evaluations of b, c and M  

section b   c M 

chamber  4.4 E-11  0.0045 0.12 
nozzle 5E-11  0.0016 0.36 

 

The above values are calculated with assumptions of constant values for the following physical data 
of water: 

Table 2. Thermo physical data for water  

Property value  unit 

Density, ρ  980   kg/m^3 
Dynamic viscosity, µ     0.001  kg/m/s 

 

6 Parameter identification algorithm 
The model used in this section is derived from expression (8) with assumption of ���~	0, and is thus 
applicable only in steady-state conditions. ����� � � ∙ ��/.��0��� ∙ D����� 	 ����� (9)  

A recursive least-square identification algorithm is employed for estimating the value of c based on 
the measurements of ��	, �� and  ��. Equation (9) can be written under the form O � P ⋅ � where O � �2��� and  P � �20.125��� ∙ D�1��� 	 �2��� . 
The parameter is initialized with  ��0� � �/ , where �/ can be a geometrical guess from Section 5, 
and the parameter variance v�0� � $/ . The update at time step k is then performed as follows, to 
minimize ‖TU 	VU‖�� where TU  and VU  are the sequences of y and h from time 0 to N. 
 W��� � O��� 	 P��� ∙ ��� 	 1� X��� � Y�� 	 1�P����Z � P��� ∙ Y�� 	 1� ∙ P����.� ���� � ��� 	 1� � X��� ∙ W��� Y��� � ��� 	 1� � X��� ∙ W��� (10)  

 

The parameter γ  is an exponential forgetting factor: it allows giving more importance to recent data 
from sensors in the recursive scheme and accounting for unmodelled slow parameter variation. The 
residual considered can be the difference between c(k) and a known value �[�\, or the update 
residual W���  [7]. Here, the first solution was retained (the second one is similar to the Kalman filter 
strategy developed in the next section). 
7 Kalman filter fault diagnosis 
The  Kalman filter model allows to estimate at the same time the system characteristic parameters 
(just as seen with b and c in the model) and one or more state variables [5]. In the chosen example 
we decided to estimate the outlet (or inlet) pressure and the parameter � � F ∙ �. The inputs are the 
measured pressure and the mass flow (respectively inlet or outlet). There is no need to make 
assumptions on pressure derivatives to obtain the Kalman algorithm as needed to obtain equation (9) 
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for the parameter identification approach. The filter is also efficient during transient phases. The 
state-space model can be written in discrete time form with time step k. The Kalman prediction is 
given in equation (11). ]�� � 1� � ?̂�_���, ]���� � ]��� � �� ∙ ^�]���, _���� (11)  

The input vector is  _ � a��, �1b and the state variables vector is ] � a�2, �b. The expression of  ^�]���, _���� with � � F ∙ � obtained from equation (8) is given in equation (12). ��� � 	F�� ��� � � ∙ ��/.��0��� ∙ D����� 	 ����� 
 �� � 0 

(12)  

Since this state-space model is nonlinear, an Extended Kalman filter (EKF) is considered (other 
extensions of Kalman filter, such as UKF, will be considered for future versions). The derivatives for 

equation (11) are cd � e\feg hgigj and !d � e\fek hkikj, and the coefficients in equations (13) can be 

obtained from equations (11) and (12). 

cd�1,1� � 1 � �� ∙ �]�� 	 1,2�2 ∙ _��, 1�/.��0 l 1_��, 2� 	 ]�� 	 1,1�m
��� 

cd�1,2� � 	�� ∙ I_��, 1�/.��0D_��, 2� 	 ]�� 	 1,1�L cd�2,1� � 0 cd�2,2� � 1 

(13)  

!d�1,1� � �� ∙ I	F � ]�� 	 1,2� ∗ 0.125 ∗ _��, 1�/.��0 ∙ D_��, 2� 	 ]�� 	 1,1�L 
!d�1,2� � 	�� ∙ �]�� 	 1,2�2 ∙ _��, 1�/.��0 ∙ l 1_��, 2� 	 ]�� 	 1,1�m

��� 

!d�2,1� � 0 !d�2,2� � 0 

 

The covariance matrix is predicted with the above coefficients as in equation (14): op$d|d.� � cd.�	op$d.�|d.�	cd.�r � !d.�	�d.�	!d.�r �8d.� (14)  

Where Q is the covariance matrix of the input noise for U and is based on the sensor noise and M is 
the covariance matrix of the state noise. Introducing the value Tds 	 as the residual between the Kalman 
prediction and measured values td (here is P1 or P2, the parameter d is only estimated, not 
measured), the residual obtained is given in equation (15). Tds � td 	 od]ud|d.� (15)  

The variance of the residual is expressed in equation (16) in terms of the state covariance matrix op$ 
and the measurement covariance matrix  ,d (pressure measurement noise).  �d � odop$d|d.�odr � ,d (16)  

The Kalman filter gain expression is given in equation (17). 6d � op$d|d.�odr�d.� (17)  

The Kalman filter is used to update the ]d estimate and the covariance matrix Cov as described in 
equation (18). ]ud|d � ]ud|d.� � 6dTds  , op$d|d � �v 	 6dod�op$d|d.� (18)  

The residual Td  can be taken before or after the Kalman correction depending on the balance 
between the reliability of the model and of the available measurements. For this demonstration the 
residual is taken after Kalman correction at the end of each calculation step. 
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8 Residual analysis for decision 
The outputs provided by the diagnosis algorithms are residuals that can be processed to raise 
detection flags. For the parameter identification approach, the residual is the difference between the 
estimated parameter c and its reference identified value. This value is constant during steady-state 
nominal operations (less than 1% noise as verified in the various firing tests used for validation). For 
the Kalman filter approach the value of the residual Td is directly the difference between the 
estimated state variable and its measured value. The diagnosis parameters are thus analyzed via the 
CUSUM test expressed in equations (19) [6],[14],[15] . 

S1(t) = max (S1(t − 1) + r(t) − µ0 − δ/2, 0) 
S2(t) = max (S2(t − 1) − r(t) + µ0 − δ/2, 0) 

(19)  

The parameter δ is the minimal size of the faulty variation to be detected. The decision rule is then 
expressed in equations (20).  

if (S1 > λ) or (S2 > λ) ⇒ decide fault 
else ⇒ decide no fault 
λ is a user threshold. 
r(t)  is the residual 5/= residual average 

(20)  

The value of δ can be set to the maximum allowable variation of the diagnostic parameter or the 
minimum detectable change. The value of threshold λ is based on the allowable detection delay. 
9 Validation on real data 
The developed tools have been at first validated using data from different firing campaigns of 2010 
and 2014. The estimated value of parameter c has been compared to those obtained from test data 
and the maximum difference observed is lower than 10%. This parameter is observed to remain 
constant during nominal steady state operation regardless of the pressure and mass flow conditions in 
the system. It thus constitutes a viable reference parameter for the residual calculation. 
Kalman estimation error for the pressure component proved to be less than 1% error. 
In this section, one firing test is selected to present an example of application on a faulty behaviour. 
The algorithms are applied on the chamber section (V2 in Figure 2) and on the nozzle (section T in 
Figure 2). The monitored sensors are inlet /outlet pressure and mass-flow (P1, P2, q2). 

9.1 ATAC campaign, May 14th 2014 results 
During this test the MASCOTTE bench was fired with the bi-dimensional nozzle configuration 
ATAC. The test was nominally performed but some small water leakages appeared in the lateral 
cooling sections of the nozzle. This phenomenon was not detected in real time as the measurements 
still satisfied the larger redlines margins. Figure 6 and Figure 7 respectively show the behaviour of 
the water cooling for the chamber and the nozzle section. Some fluctuations on the outlet pressure 
signal of the nozzle can be observed while the behaviour on the chamber section is nominal. 

    

Figure 6. Chamber section V2: pressure signals, blue = inlet and red = 
outlet pressures,  mass flow on the right 
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Figure 7. Nozzle section T: pressure signals, blue = inlet and red = 
outlet pressures,  mass flow on the right 

9.1.1 Parameter identification 

The estimated value in steady state  for the parameter c is 0.0042 for the chamber part and 0.0018 for 
the nozzle part. This result is close to the expected values of Section 5 and confirms the nominal 
behaviour of the system. On the nozzle parameter we can also identify a small fluctuation between 
30000 and 50000 time steps.This oscillation is about 1% of the nominal parameter value c. 

  

Figure 8. Estimated parameter ‘c’ for chamber (left) and nozzle (right) 
The CUSUM test is set with δ=0.5% of c (that is 0.00001) and a threshold x � 3y. The CUSUM and 
the detection flag for the nozzle part is shown below.No detection flag is raised for the chamber part, 
which allows isolation of the small fault on the nozzle.  

  

Figure 9.Nozzle CUSUM parameter (blue) and detection flag (red),  
δ =0.5% of c, λ= 3y 

Some other fluctuations are detected at around 25000 time steps but these cannot directly be 
associated to the pressure fluctuations. With less stringent CUSUM parameter such as δ=1% of c 
(δ=0.00002 )  and thresold λ=5y it is possible to tune the test on the desired oscillations only. 
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Figure 10. CUSUM parameter (blue) and detection flag (red), δ= 1% of c, 
λ=5y 

The small variations of system variables, as those linked to the small water leakages, are visible on 
the identified parameter c but it is not possible to discriminate which variable produced them. The 
CUSUM test allows to raise a detection flag when the parameter has fluctuations and it needs to be 
tuned to the c parameter fluctuations, not those of the variables.  

9.1.2 Kalman filter 

The Kalman filter is able to follow very efficiently the pressure signal. The residual at each step is 
negligible.  

     

Figure 11. The estimated pressure signal (outlet) for the outlet of the chamber 
section and the measurement overlap (image on the left). The residual for the 

selected time frame of the faults (right) is negligible less than 0.1 % of the value. 

       

Figure 12. The estimated pressure signal (outlet) for the outlet of the nozzle section 
and the real measurement overlaps (image on the left). On the right is the residual 

for the selected time frame of the faults. 
The residual curve for the nozzle part (Figure 12) shows two small variations at the time of the 
pressure measurement fluctuations: they correspond to the Kalman correction to follow the new 
trend of the pressure. The CUSUM test for the nozzle part is run during the steady state with δ=10 
corresponding to the order of magnitude of the residual in the steady state nominal operation and the 
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maximum allowed threshold is set to λ= 3δ. A flag is raised during the transient phase of the 
fluctuations: when the pressure slightly increases and when it slightly decreases to set to its expected 
nominal value.  

 
 

Figure 13. CUSUM flag for the outlet pressure measurement for the overall firing 
time frame on the left, and zoom for the time frame of the pressure fluctuations. 

10 Synthesis of results and comparison with redlines 
The aim of this work was to build up a set of tools to enhance currently used monitoring techniques 
for rocket engine and associated demonstrators. The results obtained so far showed multiple aspects 
for future developments:  

• the parameter identification method coupled with the simplified model has been validated on 
the real data as the expected numerical values for the estimated parameter c has been 
obtained for the chamber and nozzle section during different test run; 

• the Kalman filter approach allowed to produce a good estimate of the pressure measurements; 
• the two algorithms are very simple to use and they are generic and applicable without 

modifications for different test run with different operating points; 
• the CUSUM test provides a good tool for detection; it may require tuning on non-physical 

algorithm parameters such as c in case of parameter identification, or it may be based on the 
Kalman innovation variance. Via the CUSUM it was possible to detect small faults either on 
the identified parameter c or on the Kalman estimate of the pressure. The main difference in 
the two approaches is that in case of detection with the c parameter the fault cannot be 
associated to one measurement. 

Some advantages of these technics compared to the classical redlines are the following: 
• Parameter identification approach: 
o only one redline on parameter c is needed, compared to the three redlines for inlet/outlet 

pressures and mass flow monitoring, 
o the estimated parameter and its threshold do not depend on the operating point but only on 

geometrical data of the system and are always the same for different test runs. This is an 
important advantage over redlines which have to be set for each test run and can lead to 
human errors and unjustified tests stops. 

• Kalman filtering approach: 
o the filter allows to estimate one or multiple variables and allows to detect unwanted 

changes; 
o coupled with the CUSUM test it can help detecting small variations into a 

measurement; 
o it can be used to validate a measurement. 

11 Conclusions 
This work is a first step towards an automatic diagnosis system for the MASCOTTE rocket engine 
demonstrator:  the first step is to set up efficient alternatives to redlines for detection and diagnosis. 
This work will be completed with the improvement of the water circuit model, the analysis of other 
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statistical tests for detection and with the application of the algorithms to other branches of the 
MASCOTTE test bench.  
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