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Abstract. This paper deals with approximate active fault detection and control for nonlinear
discrete-time stochastic systems over an infinite time horizon. Multiple model framework is used
to represent fault-free and finitely many faulty models. An imperfect state information problem
is reformulated using a hyper-state and dynamic programming is applied to solve the problem
numerically. The proposed active fault detector and controller is illustrated in a numerical
example of an air handling unit.

1. Introduction

Automatic control is a well-established research field that aims at automatic process control
without direct human intervention. In consequence energy can be saved, costs can be reduced,
and quality can be improved. In recent decades, the problem of automatic fault detection (FD)
has become a topical issue in many technical and nontechnical areas where increased reliability
and efficiency is demanded. Safety critical applications in aircraft, trains, cars, or power plants
must be essentially accurate, reliable, robust, etc. FD in such applications prevents casualties
and unwanted damage. The purpose of FD may be different for home and commercial appliances.
One of the contemporary trends aims at reducing energy consumption of buildings.

Two main approaches to FD exist: passive FD and active FD. Passive FD is the most
widely used [1,2]. A passive detector generates decisions about possible faults based on input-
output data obtained from a system. However, unreliable decisions may be generated due to
insufficient information in the input-output data. To alleviate this issue active fault detection
utilizes a feedback to the system to improve the quality of decisions [3]. In addition, active fault
detection and control was considered in [4] to simultaneously fulfill detection and control aims.
A unified formulation of active fault detection and control was presented in [5]. A designer of
an active fault detector and controller (AFDC) can compromise between controlling the system
and exciting it to improve the quality of fault detection.

The existing literature [6-8] considers active FD mainly for linear systems and a finite time
horizon. An active fault detector that generates a sufficiently informative input signal for
a nonlinear system over an infinite time horizon was proposed in [9]. Although this active fault
detector is powerful for detecting faults in a system, potential control aims must be considered
separately. A goal of this paper is to design an AFDC for a class of nonlinear stochastic systems
over an infinite time horizon, where the optimal compromise between fault detection and control
should be achieved by considering detection and control aims simultaneously.

The paper is organized as follows. In Section 2 the problem of active fault detection and
control is formulated. A multiple model approach is employed to represent a fault-free and
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faulty behaviors of a system. Section 3 presents a solution to the stated problem which employs
various approximations. The optimization problem is reformulated such that numerical methods
of dynamic programming can be used. The proposed approach is demonstrated in a numerical
example of an air-handling unit in Section 4.

2. Problem formulation
In control systems, there are typically several types of possible faults such as actuator, sensor, and
component faults. A common problem is comprised of abrupt change detection. A suitable model
of the system behavior is achieved by a multiple model framework. Subsequently, the detection
and control aims are expressed by a design criterion that evaluates costs of states, inputs, and
decisions.

Let us assume an observed and controlled system that can be described at a time step k €
T =4{0,1,...} by the following discrete-time nonlinear model

Xp1 = £ (Xp, o, ug) + Wi, (1)

where xj, = [x;f, uk]T € R™ x M represents a hybrid state of the system, x; € R™ is a fully
measurable common part of the state, puy € M = {1,2,..., N} is an unknown index of the fault-
free or faulty model, u; € U C R™ is the input, & = {a',u? ..., uM} is a discrete set of
admissible inputs, and w; € R™ is the state noise with the known conditional probability
density function (pdf) pw (wi|x%). The mean value my (x3) and the covariance matrix Py, (x3)
of the state noise are known and depend on the hybrid state x3. The system is characterized
by a known vector function f : R x M x U — R™. The behavior of the system depends on gy,
which determines the nonlinear function f,, : R"s x f — R"=

fi (xg,ug)  if pp =1,

fo (xg,ug) if pp =2,
£ (xp, p, ug) = : (2)

fN (xk,ug) if pp = N.

It is assumed that f; represents the fault-free behavior of the system and the faulty behaviors
are defined by functions f; for i € {2,3,...,N}. The switching between the fault-free and
faulty models is defined by a stationary finite-state Markov chain with the known transition
probabilities P; j = P (ur+1 = jlpr =1). The pdf p(xo) and the probability P(pg) of mutually
independent initial conditions xg and po are known. Note that the fault occurrence in real
systems is always unknown and the transition probabilities are to be estimated.

The active fault detector and controller generates the decision di € M about the possible
faults and the input signal uj that is injected into the system. The AFDC can be described as

a0 ) )

where pj, : R"%*+1) 5 ¢/ s M x U is an unknown nonlinear vector function. The sequence p =
. T
{pgy: p1,-..} is called a policy. Note that x] = [x;-r, XiTH, e ,XH denotes the vector of stacked

variables. It is supposed that for all py exists a stabilizing policy p.

The goal is to find a suitable detection and control law represented by a policy p such that
a chosen design criterion J(p) respecting detection and control aims is minimized. The design
criterion has the following form

P
J(p)= lim E{Z)‘kL(Nkvdkanauk)}7 (4)

F—
T ko
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where A € (0,1) is a discount factor, E{-} is the expectation operator. The cost function L :
M x M x R"™ x Y — RY is defined as

L (Mk, dk,xk, uk) = OzLd (Mk, dk) + (1 — a) LC (Xk, U_k) s (5)

where o € [0,1] is a weighting factor, LY : M x M ~ R7T is a detection cost function,
L¢ : R% x U ~ R* is a control cost function and R* denotes a set of non-negative real
numbers. It is assumed that the cost functions L9, L¢, and L are bounded which makes the
criterion well defined. The cost functions L9 together with L¢ are chosen individually to satisfy
requirements of a given problem.

Note that the problem formulation allows a designer to choose between three special cases.
For o = 0, the problem can be seen as optimal stochastic control, whereas o = 1 represents
a problem of active fault detection. Finally, o € (0,1) compromises between the detection and
control aims.

3. Active fault detector and controller

The design of an AFDC is divided into several steps. The presented problem formulation
is a dynamic optimization problem that belongs to a class of imperfect state information
problems. To use standard methods of dynamic programming, a reformulation as a perfect
state information problem is employed. The optimal AFDC is obtained as a function of a state
by solving the Bellman equation [10]. The Bellman equation is solved numerically by various
approximation methods [11,12]. An approximate solution to the Bellman equation is obtained
by a quantization of the hyper-state space and using an iterative algorithm known as the value
iteration (VI). The approximate AFDC is designed by yielding all partial results.

3.1. Problem reformulation
The problem reformulation is achieved by introducing a hyper-state s; that includes a common
state x; of the system and a sufficient statistics for the unknown index . Since details of the
problem reformulation using the hyper-state are presented in [9], only the result is provided in
the following text.

The system, AFDC, and design criterion are reformulated using the hyper-state s; which is
defined as

sk:[xk}eS:(R"ZXB)CRTLS, (6)

where by € B, B={b € RV"1 : b > 0, 1Tb < 1} is a belief state with components by, ; =
P (,uk = i|x§, ulg_l) referring to the unknown scalar variable uy. The belief state by can be

understood as a conditional distribution of . The original model (1) of the system is replaced
by a new time-invariant model

Sk4+1 = P (Ska ug, Xk-‘rl) ) (7)

with a nonlinear vector function ¢ : § x U x R™ +— §. Note that besides random variable xj11
all arguments of the function ¢ are known or can be computed. The time-variant AFDC (3) is
reformulated using stationary policies 0 : S +— M and v : § — U as follows

=0 e 0

Uy
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Lastly, the optimality discounted criterion (4) is reformulated as

F
j(ﬁ) = lim E {Z )\kf/ (dk,sk,uk) ’So} , (9)

F—+oo 0
where L (dy,sg,u;) = oL (dg,si) + (1 — ) L (s, ug), L9 (dy,s;,) is a detection cost function

equivalent to LY (., dy) and L (s, uy,) is a control cost function equivalent to L€ (xy, u). These
functions are given as

L (ds k) = B { L (g, dp) g, x5, u§ ™'} (10)

I° (sp,up) = L° ([sm, N .,SW]T,uk) . (11)

3.2. Approzimate active fault detector and controller design

The optimal AFDC is based on a solution to the Bellman equation. The Bellman function V*
represents the optimal expected costs incurred from given time step to infinity and satisfies
the Bellman equation

V*(sg) = dkeﬂ%gkeUE {I_/ (dgy sk, ug) + AV™ (skr1) |dk, sk, uk} . (12)

The optimal detector o* and the optimal controller v* are given as

dj, = o* (sy) = argmin oL (d, sy.) , 1
d€

wl = ~* (sp) = argnzlan {(1 = a) L (sp, ug) + AV* (s41) |sk, ug } - (14)
ug €

The Bellman function V* is computed off-line by solving (12) and then the AFDC is
implemented to provide on-line detection and control by means of (13) and (14). However,
the analytical solution to the Bellman equation (12) is almost impossible to find. Since the AFDC
is designed for a nonlinear system, numerical methods are employed to find an approximate
solution to the Bellman equation.

It is necessary to reduce an infinite number of states. The approximate solution is based
on hyper-state space quantization. A uniform grid of points § € R™s defined by the Cartesian
product §8 = Sf x 8§ x ... x Sj, of discrete sets S is specified over a region with non-negligible
probabilities of hyper-state trajectories. A non-grid hyper-state is projected to the grid using
an aggregation function such that the Euclidean distance between the non-grid hyper-state
and the grid point is minimized. In the paper it is supposed that the Bellman function V* is
approximated by a piecewise constant function V. Note that the control space is assumed to be
discrete with a reasonable number of controls.

An approximation of the unknown Bellman function V* can be determined by the VI
algorithm [13]. Following the general theoretical results, the VI algorithm consists in iterative
computation of the contraction mapping

Vi) ()=  min E {E (i Sk, ug) + AV (55.41) \dk,@c,uk}, (15)
dpeMueld
where ¢ = 0,1,2,... is an iteration index. Given any initial Bellman function V(© the VI

algorithm converges to the fixed point. In practice, the iteration process is terminated after
a fixed number of iterations.

In the iterative computation (15), it is necessary to compute the conditional expected value
of the Bellman function. Due to nonlinearity of the system, the conditional expected value is
computed approximately using the unscented transform with a parameter s [14].
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4. Numerical example

Control of temperature in a lecture hall and active fault detection in a corresponding air handling
unit (AHU) are considered in this numerical example. The AHU mixes the ambient air and
indoor air together with ratio proportional to the damper position. The mixed air is heated
or cooled by a heating or cooling coil before it is supplied to the lecture hall. The AFDC can
be focused on active fault detection of a stuck damper or it can be aimed at the temperature
control of the lecture hall. The AHU and lecture hall temperature model can be described by
the following continuous-time nonlinear model [15]

C'T'(t) = s (T5(t) — T'(t)) + % (T*(t) — T'(t)) + P" (1),
T3(t) = AT (t) + (1 — A(2)) T>(t) + T"(t),
Phc,’,}hc

mscs ’

Thc(t) — Shc(t)

(16)

where T'(t) [°C] is the indoor air temperature, T%(t) [°C] is the ambient air temperature,
T5(t) [°C] refers to the supply air temperature, A(t) € UN = {0,0.1,...,0.9} is the damper
position and P"(t) represents the disturbance power load generated for example by occupancy
of the lecture hall or its equipment. Note that the damper is fully opened to the ambient air
when A(t) = 0 and it cannot be fully closed due to fresh air circulation, therefore max (A(t)) =
0.9. The thermal capacity of the lecture hall is C' = 7.8 - 105 [J - °C~!], the specific thermal
capacity of supply air is ¢¢ = 1012 [J-kg~!-°C~!], mass flow rate of the supply air is m® =
1 [kg-s7!] and the external wall thermal resistance is R°Y = 7-107* [°C - W~!]. The increase
or decrease in temperature of the supply air caused by heating or cooling T1¢(¢) [°C] is defined
by the coil switching s"(t) € U™ = {~1,0, 1}, the heating power P"® = 4.10* [W] of the AHU,
and the coil efficiency 7"® = 0.6. The system input is s"°(¢) together with A(t) and the set
of admissible inputs is defined as U = Z/I.L x UN. In the paper, it is assumed that the ambient
air temperature remains constant, i.e. 7%(t) = 0, and the considered fault is represented by
the damper stuck at the fully open position. A possible fault of the system is represented by
damper stuck at the position fully opened to the ambient air.

The nonlinear model (16) discretized by the forward Euler method with the sampling
period Ty = 300 [s] has the following form

fi Xk, uk) = Axp + Blug s + B (%1 — Xp2) Up o + Wi, (17)
where i € M = {1,2} and the following definitions hold

A [ 1 - KTy — KoTy K1Ts + KoTj ] BN = [ K1 K3T; ] BY = [ KqT; } BY [0 ]7

0 1 0 1 — 0 2 — 0
x| [T o [wen ][ ske | Wk
o oo i 7 B Dl e P O Dl £
398 S 1 Phc hc
Kl = E K2 _ n (18)

:CiRow’ 3= mses

ct’

The state noise wy, is independent of the system state. The noise wy 1 represents disturbance
power load and has the Laplace distribution with the location parameter @ = 0 and the scale
parameter § = 0.08. The noise wy, 9 is described by Dirac delta function 6 (wy2). The system
initially starts as fault-free, i.e. P (g =1) = 1. The switching between fault-free and faulty
models is defined by the transition probabilities P (pugy1 = i|ux = j) = 0.02 for 4,5 € M,i # j.
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The detection cost function L (g, di,) and control cost function L€ (xz,uy) are chosen as

0 if di = ux
LY (ug, di) = ’
(1, i) { 1 otherwise,

Ny
ref)?2
L (xg,ug) = Z IpMug |+ ar (1 — et (xa—a™) ) , (19)
i=1

where p'¢ = [plfc, pSC]T =[1, O]T and q = [q1, qg]T = [60, 1]T are parameters, and 2™ = 23 [°C]
is the reference indoor temperature. From (19) it follows that the detection aim is to minimize
the probability of making a wrong decision about an actual system model. The control aim
is designed to minimize costs of a compromise between a weighted price of control actions and
following the reference temperature. It can be derived that the detector is given by the following
decision rule

d, — {1 if P(ug = 1)x§,ul™1) > 0.5, (20)

2 otherwise.

The design parameter of the UT is set to x = 3, the discount factor A = 0.98, and the weighting
factor is & = 0.99. For the constant ambient air temperature 7* = 21 [°C], the uniform grid is
defined by St = {5,5.1,...,30}, 8§ = {21}, and S5 = {0,0.01,...,1}.

The VI algorithm was terminated after performing njer = 30 iterations. The corresponding
approximate Bellman function V for fixed spo = 21 [°C] is shown in Figure 1. The global
minimum of V is around the value of the indoor reference temperature which is caused by
the control cost function L°. It can also be seen that approximate Bellman function V attains
a local maximum when the uncertainty of the model is high, i.e. s;3 is close to 0.5. When
the indoor air temperature is close to the ambient air temperature, V slightly increases as well.
This is caused by the definition (17) of the fault-free and faulty models which differ just in BY.
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Figure 2. Typical state trajectories of the
system with the AFDC for a time horizon of
12 hours.

Figure 1. The approximate Bellman
function for fixed sy = 21 [°C].
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Figure 4. Typical true model, probability
of the fault-free model, and a decision of the
AFDC for a time horizon of 12 hours.

Figure 3. Typical control actions of the
AFDC for a time horizon of 12 hours.

Next, a simulation of system trajectories was performed for a time horizon of 12 hours.
Typical state trajectories of the system with the AFDC are depicted in Figure 2. A development
of the state trajectories indicates that the indoor air temperature follows the reference value
with oscillations caused by a discrete amount of power delivered during the sampling period.
The trajectories of ug; and uy o are depicted in Figure 3. Since the ambient air temperature
is lower than the reference air temperature, the AFDC keeps the damper closed to the ambient
air. Figure 4 shows that the true model is correctly detected with a delay of approximately
5 steps. It was shown that the AFDC fulfilled the detection aim as well as the control aim. The
designed AFDC is able to stabilize the system both for fault-free and faulty model as depicted
in the Figures 2, 3, and 4. However, in general a stability is not guaranteed.

Each action of the approximate control policy 4(s) = [ug 1, ukyg]T of the AFDC is shown in
Figures 5 and 6. These two figures represent the control policy functions for coil switching and
damper position. A value of control is defined by color hue. Neither heating nor cooling is needed
when the actual indoor temperature is close to the reference indoor temperature as shown in
Figure 5. Heating or cooling is demanded when the actual indoor temperature is lower or higher
than the reference indoor temperature, respectively. Figure 6 shows that when the indoor and
ambient air temperatures attain approximately the same values it may be difficult to decide
between fault-free and faulty model. In such a case the damper fully opens to ambient air to
differentiate the temperatures. The damper is closed uy 2 = 0.9 for majority of states to prevent
unwanted cooling of the indoor air.

In the numerical example of the AHU, the weighting factor o that compromises detection and
control aims was set to a = 0.99. To illustrate an influence of the parameter o on detection and
control aims, the following set of o values A = {0,0.01,0.5,0.99,0.999, 1} was chosen. For each
of the A element an estimation of detection J9 and control J¢ part of the design criterion (4)
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Figure 5. The component uj; of the Figure 6. The component ugs of the
approximate control policy 4 for the AHU. approximate control policy 4 for the AHU.

was performed. The detection and the control parts are expressed as

F
d - krd
= 1 E L

J Plm { E A (Mk,dk)} ,

k=0

F
J¢= lim E{Z)\kLC(xk,uk)}. (21)

F—
oo Lo

The values J9 and J¢ were computed approximately using 10 000 Monte Carlo simulations of
state trajectories for a finite time horizon F' = 500. The Figure 7 shows that the estimates Jd
and J¢ attain their lowest values for o« = 1 and o = 0, respectively. Note that the solutions
on the Pareto front are not uniformly distributed with respect to the weighting factor a.
The value J¢ remains approximately the same for a € [0,0.99] and only quality of detection
changes. Thus one might consider only a@ > 0.99 when a compromise between active fault
detection and control should be considered in this case.

5. Conclusion

This paper is one of the first to present a design of an approximate active fault detector and
controller (AFDC) for a class of nonlinear stochastic systems over an infinite time horizon.
The problem formulation allows a compromise to be made between detection and control aims.
The approximate AFDC was designed by solving the Bellman equation over a discrete grid of
hyper-states and successfully demonstrated in a numerical example of an air handling unit.
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