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Abstract. An enhanced approach to fault estimation systems design, adjusted for linear
continuous-time systems, is proposed in the paper. Based on LMI principle the method exploits
state-space observer principle in an adaptive fault estimation scheme for single actuator faults.
A simulation example, subject to different type of failures, demonstrates the effectiveness of the
proposed form of the fault estimation technique.

1. Introduction

Operating conditions in modern engineering systems are still exposed to possibility of system
failure. Any failure of the sensors, actuators or other system components can drastically change
the system behavior. Fault tolerant control (FTC) allows a strategy to improve reliability of
the whole system and so many techniques have been proposed especially for sensor and actuator
failures with application to a wide range of engineering fields. In some cases, fault estimation
strategies only are needed to carry on controlling the faulty system and, respecting this fact,
many sophisticated modifications have been developed, e.g., sliding mode observers, neural
network based approaches and adaptive observer technique.

To estimate actuator faults for the linear time invariant systems without external disturbance
the principles based on adaptive observers are frequently used, which make estimation of actuator
faults by integrating the system output errors. First introduced in [11], this principle was applied
also for descriptor systems [10], linear systems with time delays [3], [13], system with nonlinear
dynamics [1], a class of nonlinear systems described by Takagi-Sugeno fuzzy models [6], [7] and
linear stochastic Markovian jumping systems [5]. Some generalizations can be found in [15].

Following the results presented in [12], two methods for actuator fault estimation based on
the adaptive observer technique are proposed in the paper. Following examination of the model-
based fault estimation schemes, an enhanced algorithm using H,, approach is provided. Applied
enhanced conditions in the scheme increase rapidity and develop a general framework for fast
fault estimation in adaptive observer structures for linear deterministic systems. The approach
utilizes the measurable input and output vector variables, design conditions are based on linear
matrix inequality (LMI) technique giving an effective way to calculate the observer parameters.

The paper is organized as follows. Ensuing the introduction given in Sec. 1, Sec. 2 presents
the problem formulation focusing on assumptions about the system and actuator fault properties.
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In Sec 3 a short description of the main properties of methods exploiting the adaptive observer
technique for actuator faults estimation in linear systems is presented and an enhanced condition
of the Hy, observer existence are analyzed and proven in Sec. 4. In Sec. 5, simulation results
are presented and, finally, some concluding remarks are reached in Sec. 6.

Throughout the paper, the following notation was used: a”, X7 denotes the transpose
of the vector & and the matrix X, respectively, diag[-]| enters up a block diagonal matrix,
rank( - ) remits the rank of a matrix, for a square matrix X < 0 means that X is a symmetric
negative definite matrix, the symbol I, indicates the n-th order unit matrix, IR notes the set
of real numbers, and IR™, IR™*" refer to the set of all n-dimensional real vectors and n x r real
matrices, respectively.

2. Problem formulation
A linear dynamic multi-input, multi-output (MIMO) system in presence of an unknown fault
can be described by the state-space equations in the following form

q(t) = Aq(t) + Bu(t) + Ef(1), (1)

y(t) = Cq(t), (2)

where g(t) € R", u(t) € IR", and y(t) € IRP are vectors of the system, input and output
variables, respectively, f(t) € IR® is the unknown fault vector, A € IR"*"™ is the system dynamic
matrix, E € IR™** is the fault input matrix and B € IR"*" and C € IRP*" are the system input
and output matrices.

To estimate actuator faults and the system states simultaneously, the following adaptive state
estimator is proposed [2], [8]

qe(t) = Aq.(t) + Bu(t) + Ef.(t) + J(y(t) — y.(t)), 3)

Y.(t) = Cq,(t), (4)

where q,(t) € IR"™ is the state observer vector, f. () is an estimation of the fault f(t), y.(¢t) € R™
is the vector of estimated output variables, J € IR™*P is the estimator gain matrix while n > p.
The task is to design the matrix J in such a way that the observer dynamics matrix
A, = A — JC is stable and f,(t) approximates a slowly varying actuator fault f(¢). Actuator
faults are represented as a exchange of the matrix E to B for s = r.
The state observer (3), (4) is combined with the law for the fault estimation updating of the
form [12] .
fe(t) = GHTey(t)a (5)

where
ey(t) = y(t) — y.(t), (6)

H c RP** is the gain matrix and G = GT > 0, G € IR**® is a learning weight matrix that has
to be set interactively in the design step.
It has to be noted that a modifications of (5) were proposed in [14] for time varying f(¢) in
the form .
F.(t) = GH” (0e, () + &,(1)), (7)

where o € IR is a positive scalar, determining together with G the learning rate. A generalization
of the adaptive state estimator is given in [10], where

qc(t) = Aq.(t) + Bu(t) + Ef .(t) + J(y(t) — y(t) + Ja(y(t) — 9.(1)), (8)

y.(t) = Cq. (1), (9)
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Fo(t) = Ley(t) + Lagy (1) (10)

It is obvious that if J4 = 0 and if it can be set L as oLy with Ly = GH?” then this estimator
reduces to the so called fast adaptive fault estimator (3), (4), (7). Analogously, if J; = 0,
L;=0and L =GHT the estimator reduces to the zero-integral estimator (3), (4), (5). In this
work the zero-integral estimator is used for slowly-varying faults.

Assumption 1 The couple (A,C) is observable and rank(CE) = rank(E).

Assumption 2 The unknown fault vector, changing unexpectedly when a fault occurs, is
piecewise constant, differentiable and bounded, i.e., |f(t)| < fimax < 00, the upper bound f,, ..
of the fault magnitude is known, and the value of f(t) is set to zero until a fault occurs.

Under these assumptions design of the matrix parameters of the observers has to ensure
asymptotic convergence of the estimation errors (6) and

ef(t) = f(t) = fe(t) (11)

to zero values. Note, Assumption 2 implies that the derivative ef(t) with respect to time can
be considered as

ep(t) = —fe(t). (12)

3. The adaptive observer principle in actuator faults estimation

If single actuator faults influence the system through different input vectors (columns of the
matrix B), it is possible to avoid design of estimators with the tuning matrix parameter G > 0
and formulate the design task through the set of LMIs and a linear matrix equality.

Proposition 1 The actuator fault estimator is stable if there exist symmetric positive definite
matriz P € IR™" and matrices H € IRP**,Y € IR™ P such that

P=P" >0, (13)
PA+ATP-YC-C"YT <0, (14)
PE=C"H. (15)

When the above conditions hold, the observer gain matriz is given by
J=Py (16)
and the adaptive fault estimation algorithm is
fo(t) = GH" Cey(1). (17)
where
eq(t) = q(t) — q.(t). (18)

matriz H is obtained as an LMI variable and G € IR**® is an interactive setting symmetric
positive definite matriz.

Proof: (compare, e.g., [3], [14]) From the system model (1), (2) and the observer model (3), (4)
it can be seen that

éq(t) =q(t) — q.(t)
= Aq(t) + Bu(t) + Ef(t) — Aq.(t) — Bu(t) — Ef.(t) — J(y(t) — y.(t)) (19)
= (A= JC)ey(t) + Ees(t),
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where the observer error is
eq(t) = q(t) — q.(1). (20)

Since e (t) is linear with respect to system parameters, it is possible to consider the Lyapunov
function candidate in the following form

v(eq(t)) = eq (t)Peq(t) + ef ()G ey (t) (21)
where P > 0, G > 0 are symmetric positive definite matrices and an actuator fault satisfied the
condition

f.(t)=GH"e,(t) = GH Ce,(t), (22)
as well as ‘
ef(t) = fo— fc(t) = é5(t) = =f.(0). (23)
Then, the derivative of v(e,4(t)) with respect to t is
0(eq(t)) = to(eq(t)) + 01(eq(t)) <0, (24)
where

o(eq(t)) = ég(t)Pey(t) + ef (1) Péqy(t)
= (A= JC)ey(t) + Eef(t))" Pey(t) + €] (t)P (A — JC)ey(t) + Eey(1))
=el(t) (A= JC)TP+ P(A—JC)) ey(t)
+ eq( )PEe;(t) + ef (1) E" Pey(t)

(25)

and
bileg(t) = EX(Ges(t) + LG es(t) = —FL ()G les(t) — F (G FL(0).  (26)

Substituting (22) into (26) leads to
01(eq(t)) = —eg(t)CTHGG_lef(t) - e?(t)G_lGHTCeq(t)

27
S (e{(t)CTHef(t) + e}f(t)HTCeq(t)) . (27)
Thus, substituting (25) and (27) into (19), the following inequality is obtained
d(eq(t) =el(t) (A= JC)TP+ P(A-JC))eyt) o8)
+el(t) (PE—~ CTH) es(t) + ek (t) (BTP — HTC) e,(t) < 0.
If there is set the condition
eq(t) (PE—CTH)es(t) + ef (t) (BTP — HTC) e,(t) = 0, (29)
then the last equality gives
PE-CTH=0 (30)
and, evidently, (30) implies (15).
Using the above given condition, the resulting formula for v(e4(t)) takes the form
ieq(t)) = e] (t) (A= JC)TP + P(A— JC)) ey(t) < 0, (31)
where
PA-JC)+(A-JC)TP <. (32)
Since the inequality (32) can be written as
PA-PJC+ATP-CTJTP <0, (33)
by introducing the substitution
PJ=Y, (34)
it is possible to express (33) as (14). This concludes the proof. [
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4. Enhanced design conditions
Analyzing (19), i.e., the differential equation of the form

éq(t) = (A = JC)ey(t) + Eey(t), (35)

it is evident that ey(t) acts on the state error dynamics as an unknown disturbance and,
evidently, this differential equation is so not autonomous after a fault occurrence. Reflecting
this fact, the enhanced approach is proposed to decouple Lyapunov matrix P from the system
matrices A, C by introducing a slack matrix @ in the observer stability condition, as well as to
decouple the tuning parameter § from the matrix G in the learning rate setting and to use it to
tune the observer dynamic properties. Since the design principle for unknown input observer can
not be used in the case if a fault is to be estimated, the impact of faults on observer dynamics
is moreover minimized with respect to the Ho norm of the transfer functions matrix of e, and
ey, while a reduce in the fault amplitude estimate is easily countervailable using the matrix G.
In this sense it is proposed to formulate the enhanced design conditions as follows:

Theorem 1 The actuator fault estimator is stable if for given positive § € IR there exist
symmetric positive definite matrices P € IR™*"™, Q € IR"™ "™, matrices H € IRP**, Y € IR"*P
and a positive scalar v € IR such that

P=P'>0, Q=Q" >0, ~v>0, (36)
QA+ ATQ-YC-C'YT+CTC  « *
P-Q+d6QA-d6YC —20Q s <0, (37)
0 SETQ —I,y
C"H = QE. (38)

When the above conditions are affirmative the estimator gain matrix is given by the relation
J=Q'Y (39)
and the adaptive fault estimation algorithm is given by (17).

Here and hereafter, * denotes the symmetric item in a symmetric matrix.

Proof: Using Krasovskii theorem [4], the Lyapunov function candidate can be considered as
follows

oeq(t) = €] ()P, (1) + ef (NG "es(t) + [ (] (re,(r) ~vef(res(r)) dr. (40)
0

where P = PT >0, G = G' > 0, v > 0 and ~ is an upper bound of square of Hs norm of
the transfer function matrix es < e,. Then the derivative of v(ey(t)) with respect to t has to
be negative, i.e.,

i(eq(t)) = el (t)Pey(t) + el (t)Pey(t) + e} (t)G ey (t)

41
+ ef ()G Tes(t) + el (t)ey(t) —vef (t)es(t) < 0. (41)

If it is assumed that the statements (22), (23) hold, then substitution of (22) into (41) leads to
i(eq(t)) = & (1) Pey(t) + ef (t) Péq(t)
— el () CTHGG 'ef(t) — e ()G 'GH" Ce,(t) (42)
+ el (t)ey(t) —~ef(t)es(t) <0,
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(eq(t)) = e (t)Peg(t) + e (t) Peg(t) — eg (t)C" Hey(t) — ef () H' Cey(t) (43)
+ eg(t)ey(t) - 763;(t)ef(t) <0,
respectively.
Since (35) implies
(A= JC)e,(t) + Bey(t) - é,(t) = 0, (44)
it is possible to define the following condition based on the equality (44)
(eZ(H)Q + €] (£)0Q) (A — TC)eqy(t) + Eey(t) — é,(t)) =0, (45)

where @ € IR™*" is a symmetric positive definite matrix and § € IR is a positive scalar. Then,
inserting (45) and its transposition into (43), the following has to be satisfied

beg(t) = EL(1)Pey(t) + el (1)Pey(t) — ef (1)CT Hey(t) — €] () HT Ce, (1)
+ (D@ -+ L 1IQ)(A — TC)ey(t) — &,(1)
+ (A= TC)e, (1) — &4(0)"(Qet) + 6Qe, (1) (16)
+ (X (D@ + &L (15Q) Bey(t) + e (1) BT (Qey(t) + 5Qe,(1)
+ el (t)ey(t) €] (t)eg(t) < 0.

If the following condition is introduced
el(t) (ETQ — H'C) e, (t) + €L (t) (QE — CTH) ef(t) =0, (47)

this gives the equality
QE -C"H =0, (48)

which implies (38).
The condition (47) allows to write (46) as

(eq(t)) = e () Pey(t) + ef (t) Péq(t)
+ (eg (NQ + &5 (1)IQ)((A — JC)eq(t) — &4(1)) (19)
+ (e ()(A—JO) — &7 (1))(Qeq(t) + Qe (t))
+ dey (1)QEes(t) + def (1) ET Qey(t) + e (t)ey(t) — vef (e (t)
and to prescribe the stability condition as
i(eq(t)) = e (t)P*eg(t) <0, (50)
where
QA-JC)+CCT+(A-JC)TQ P-Q+6A-JC)"Q 0
P* = P-Q+iQA—-JC) —-26Q IQE | <0. (51)
0 5ETQ _’YIrf
Introducing the notation
QJ=Y (52)

then (51) implies (37). This concludes the proof. [
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5. Illustrative example
In the example, there is considered the system (1), (2) in the state-space representation, where
the system matrices are

—3.2341 —0.0356  0.0200  0.0267 —0.3802  1.4370
A _ | 00356 -3.1883 —0.0502  0.0189 B_p_ | 06959 -0.5393
~ | 00200 —0.0502 —3.2575 0.0100 [* | 23171 —0.4301 |
0.0267  0.0189  0.0100 —3.1537 0.0000  0.6507
1211
C_[1 10 2]'

Solving (13)-(15) with respect to the LMI matrix variables P, H, and Y using Self-Dual-
Minimization (SeDuMi) package [9] for Matlab, the estimator parameter design problem was
solved as feasible and

0.1770 0.2107  0.0321  0.0457 —-0.3691  0.3090
p_ 0.2107 0.6888  0.0678  0.2060 y — —0.7451 —0.1267
~ | 0.0321 0.0678  0.1586 —0.0955 |’ - 0.0251  0.1647 |’

0.0457 0.2060 —0.0955  0.6740 0.2357 —0.8632

g _ [ 04026 —0.1207
T —02489 02774 |

The estimator gain matrix was computed using (16) as follows

—1.2534  2.8937
J— —1.1442 —0.6872
o 1.5003 —0.0182 |’

0.9967 —1.2693

and guaranties the stable actuator fault observer, where the system matrix eigenvalues spectrum
is

p(A) = p(A — JC) = {—2.1745 — 2.6067 — 3.3377 +0.15661} .

Setting the tuning parameter G as follows

1.7 1.0

G= [ 1.0 5.5 ]
the observer fault response is given in Fig. 1. This figure presents the fault signal, as well as its
estimation, reflecting at first a single actuator fault in the the second actuator. This actuator
fault starts at the time instant ¢t = 30s and is applied for 40s. The learning parameter G has
been set experimentally, considering the maximal value of the fault signal amplitude. Then, at
the time instant ¢ = 100s a fault of the first actuator is applied for 40s.

From the simulation results in Fig. 1 it can be observed that the differences between the
signals reflecting single actuator faults and the observer approximated ones tends to zero.

Setting the tuning parameters 6 = 5 and solving (36)-(38) with respect the LMI matrix
variables P, Q, H, and Y, ~, the estimator parameter design problem was solved as feasible

and the design parameters were

25.7515 18.1103 3.3556  —4.3147 —0.6530 —0.7548
p_ 18.1103  61.2780 4.9193 4.9418 y — —-1.6303 —1.6135
N 3.3556  4.9193  20.7111 —7.5051 |’ | —0.2333 0.5191 |~

—4.3147 49418 —7.5051  62.0896 0.4721 —4.5613
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Figure 1. The actuator faults and its estimation using fault observer designed pursuant to
Proposition 1

1.9347  2.1134 0.1955 0.5689

Q= 2.1134  5.9730 0.3846 1.9950 H— 3.0563 —0.9781
0.1955  0.3846 1.2356 —0.7994 |~ —1.8683 2.9047 |-
0.5689 1.9950 —0.7994 7.2932

The obtained estimator gain matrix J from (39) is

—0.0057 —0.0353
—0.0256 —0.0104
—0.0010 0.0063

0.0091 —0.0743

which gives that all eigenvalues of the estimator dynamic matrix spectrum p(A.) are stable,
where

p(Ae) = p(A—JC) ={ —2.9469 —3.1321 —3.2411 —3.2704 }.

Setting the learning parameter G as follows

G_[l.?) 0.5]

0.5 21

the observed actuator faults are illustrated in Fig. 2. This figure presents the fault signal, as well
as its estimation, reflecting at first a single actuator fault in the the second actuator, starting at
the time instant ¢ = 30s and applied for 40s, then the fault of the first actuator is introduced in
the time instant ¢ = 100s and lasts for 40s. The learning parameter G and the tuning parameter
& were set experimentally considering the maximal value of fault signal amplitude. Similarly to
the previous case, the faults considered in simulation do not cause closed-loop instability. In
the simulation results in Fig. 2 it can be seen that the exists very small differences between the
signals reflecting single actuator faults and the observer approximate ones for piecewise constant
actuator faults.

It has to be noted that now the matrix norms of G and J are substantially smaller then
the matrix norms of these matrices computed using the standard design conditions (13)-(15).
Moreover, since in this case matrix norm of H is significantly higher, LMI solution was carried
out with higher precision.
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Figure 2. The actuator faults and its estimation with enhanced condition

6. Concluding remarks

Presented fault estimation method for linear continuous-time systems provides useful and easily
implementable structure in process of fault detection, isolation and identification. Proposed
approach to fault estimation design utilizing enhanced design conditions allows even better
results, where the occurred actuator faults are estimated sooner and more precise as can be
seen in simulation results. Tuning parameters G and § were set interactively, incorrect values
of these parameters would result in unstable or noisy response of the fault estimation signals.
A simulation example, subject to given type of failures, demonstrates the effectiveness of the
proposed form of the fault estimation design technique.
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