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Abstract. This paper is concerned with the problem of recursive system identification using non-
parametric Gaussian process model. Non-linear stochastic system in consideration is affine in control and
given in the input-output form. The use of recursive Gaussian process algorithm for non-linear system
identification is proposed to alleviate the computational burden of full Gaussian process. The problem of
an online hyper-parameter estimation is handled using proposed ad-hoc procedure. The approach to system
identification using recursive Gaussian process is compared with full Gaussian process in terms of model
error and uncertainty as well as computational demands. Using Monte Carlo simulations it is shown, that
the use of recursive Gaussian process with an ad-hoc learning procedure offers converging estimates of
hyper-parameters and constant computational demands.

1. Introduction
Throughout the sciences the task of building models from observed data is of fundamental importance.
In the area of control this task is known as system identification. The way of obtaining the model is in
direct contrast to mathematical modelling, where the knowledge from wide variety of disciplines, such
as physics, biology, economy and engineering, is exploited. In control engineering, the need for system
identification arises whenever there is uncertainty in the knowledge of the system central to the task.

Identification methods can be divided according to the way they process data into: batch methods
and recursive methods. By the batch identification we will understand a method that processes all the
measured data at once to produce the system model. On the contrary, recursive identification algorithms
process the measurements as they become available during the course of the system operation and
gradually refine the system model. These algorithms are at the core of adaptive control mechanisms.

Models of the system can be parametric or non-parametric. Parametric models typically assume
fixed structure with finite number of free parameters, which need to be estimated. Well known model
structures include for example ARX and ARMAX models for linear systems. For non-linear systems
various types of neural networks can be named. On the other hand, non-parametric models assume
no fixed structure and, from the viewpoint of parametric models, their number of ’parameters’ can be
potentially infinite. Spectral and correlation approaches fall into this category along with increasingly
popular Gaussian process regression models.

Contrary to the parametric models, such as the neural networks, Gaussian process (GP) models do not
possess a fixed structure and thus are much more flexible. Neal showed [1], that a neural network, where
the number of hidden units goes to infinity, is equivalent to GP model with certain covariance function.
Specifying a GP can be effectively thought of as putting a prior distribution over functions themselves,
where functions can be informally regarded as vectors of function values of infinite dimension. Various
communities pay increasing attention to the GP models due to their effectiveness in modelling of highly
non-linear phenomena. They are attractive, also because they combine tractable Bayesian inference with
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non-parametric nature of the model. GP models have been utilised in many applications. These include
non-linear filtering [2–5], model predictive control [6], non-linear system identification [7], time series
forecasting [8], reinforcement learning [9, 10], numerical quadrature [11] and many others.

Great advantage of parametric models is that they lend themselves nicely to the possibility of devising
a recursive estimation algorithm. As GPs are non-parametric models, the situation is much more
complicated. Typically, it is necessary to consider some kind of GP approximation to counteract the
problem of increasing data size. Särkkä [12] proposed a solution to this problem based on Kalman
filtering and smoothing applied to the state-space representation of the GP with specific covariance
functions. This solution, however, works for one-dimensional inputs only and is thus inappropriate for
our purposes. Very frequently used alternative is the Sparse Online Gaussian Process (SOGP) [13–15].
SOGP however does not solve the problem of online learning of hyper-parameters.

Our goal is the investigation of the recently proposed Recursive Gaussian Process (RGP) algorithm
[16] for the purpose of non-linear system identification. Ultimately, we envision the future incorporation
of RGP system identification algorithm into the functional dual adaptive control framework [17, 18].

The rest of the paper will present a description of the problem formulation in section 2, followed by
an RGP based non-linear system identification in section 3. In section 4, a simple numerical illustration
comparing the full GP and the recursive GP in non-linear system identification is presented. Finally,
section 5 concludes the paper.

2. Problem formulation
In this work, we are dealing with the non-linear stochastic discrete time-invariant system given in an
input-output representation

S : yk+1 = f
(
xa

k

)
+ g

(
xa

k

)
uk + ek+1, (1)

where f , g : Rny+nu+1 → R are unknown non-linear functions, xa
k =

[
yk, . . . , yk−ny , uk−1, . . . , uk−nu

]>
∈

Rny+nu+1 is the state vector, uk and yk are input and output signals respectively at discrete time instants
k ∈ 0,1, . . . ,N-1 and ek is the noise term. In addition, the following assumptions are considered:

A1: The non-linear functions are smooth, i.e. f
(
xa

k

)
, g

(
xa

k

)
∈C∞.

A2: The structural parameters ny and nu of the system are known.
A3: ek ∈ R is a white zero-mean Gaussian noise with known variance σ2

e .

The unknown non-linear system is modelled by a non-parametric GP model as an alternative to the
parametric neural network model [19]. The structural information about affinity of the system input uk
is tackled by employing a specific form of covariance function. We postpone discussion of the specifics
to the section 3, where modelling of the non-linear system with the help of GPs is described in detail
in system identification setting. For now, the focus will be given to the GP regression in it’s original
formulation to illustrate the shortcomings, when used for sequential data processing. This approach is
termed full GP (FGP) in section 4.

To motivate the need for recursive GP regression algorithm, the Gaussian process regression problem
will be described. Gaussian process regression refers to the estimation of an underlying function
h : RD → R of a noisy static mapping

yi = h
(
xi
)

+ εi (2)

from a given set of input vectors X =
{

xi ∈ R
D
}n

i=1
and corresponding set of observations y =

{
yi ∈ R

}n

i=1
,

where
{
εi ∈ R

}n
i=1 is the noise sequence. The key concept here is that the estimated unknown function h

is modelled using a GP prior
h ∼ GP

(
m, k

)
(3)
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which, akin to the Gaussian distribution, is fully determined by its first two moments defined as

m (xp | θ) , Eh
[
h(xp) | θ

]
, (4)

k (xp, xq | θ) , Eh

[(
h(xp)−m(xp)

) (
h(xq)−m(xq)

)
| θ

]
, (5)

where Eh is expectation over function values h, m(xp | θ) : RD → R is a mean function and k(xp, xq | θ) :
RD×RD → R is a covariance function for all xp, xq ∈ R

D. The covariance function is parametrised by a
vector of free hyper-parameters θ. To keep the notation uncluttered, dependence of m(·) and k(·) on θ will
be omitted from now on. Designers have an incredible variety of covariance functions at their disposal
each expressing different assumptions about the modelled phenomena. For comprehensive account of
the wide range of covariance functions and their relationship to other models reader should consult [20].
Compared to parametric regression models, where the assumptions on the modelled function are typically
expressed in the form of fixed model structure, the assumptions of non-parametric GP models, expressed
by the choice of covariance function, are much less restrictive.

With a GP prior in hand, Bayesian techniques of inference can further be employed to refine the GP
prior p(h |θ) by incorporating the evidence from the set of input vectors X and observations y to produce
the GP posterior

p(h | y,X,θ) =
p(y |h,X,θ) p(h |θ)

p(y |X,θ)
, (6)

where the GP posterior h | y,X,θ ∼ GP (m+, k+) is fully described by a posteriori mean function m+ and
covariance function k+ given by

m+(x) = m(x) + k(x, X)k(X, X)−1y, (7)

k+(x, x) = k(x, x) − k(x, X)k(X, X)−1k(X, x), (8)

where k
(
x, X

)
=

[
k
(
x, x1

)
, . . . , k

(
x, xn

)]
, k

(
X, x

)
= k

(
x, X

)> and k
(
X, X

)
is an n × n prior covariance

matrix of elements k(xi, x j). In other words, for any fixed x ∈ RD the equations (7) and (8) define the
Gaussian posterior predictive distribution over the values of function h at this point.

Looking at equations (7), (8) one can notice the fact that the prediction is calculated using all available
data, which is the very feature of non-parametric GP modelling. In offline settings, where all the data
are available beforehand, this results in the necessity to invert large matrices. Moreover, in situations,
where the real-time data processing is required, the size of the matrix k(X, X) grows, which leads to
ever increasing computational demands for matrix inversion in each time step as more and more data are
being processed. To alleviate this problem, we propose the use of RGP regression algorithm for system
identification task, which is described in the next section.

3. Recursive Gaussian process regression
This section covers the identification of a non-linear stochastic system by means of the RGP regression
algorithm. RGP algorithm is briefly outlined along with the ad-hoc procedure for hyper-parameter
learning. Last section covers the application of RGP to the system identification task.

3.1. Recursive Gaussian Process algorithm
Recursive Gaussian process regression algorithm (RGP) was proposed by Huber [16] as a solution to
the problem of GP regression, where the data arrive sequentially. The main idea employed in RGP is
to use a predefined set of basis vectors as a sparsification element [21], from which the predictions are
computed. The number of basis vectors s� N (where N is the number of data points) is fixed throughout
the operation of the algorithm, which enables to keep the computational demands in check. On the other
hand, this acts as an approximation to the full GP approach characterized by the equations (7) and (8) as
the prediction is no longer a function of all the previously seen data.
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Keeping with the notation of [16], let X =
[
x1, x2, . . . , xs

]
denote the matrix of locations of the

basis vectors and g = g(X) the corresponding vector of values of the unknown latent function g.
Because g is considered to be a GP, the distribution p0

(
g
)

= N
(
g; µg

0, Cg
0

)
at initial time step k = 0 is

Gaussian. For any time step k > 0, new set of nk observations yk =
[
yk,1, yk,2, . . . , yk,nk

]
at input locations

Xk =
[
xk,1, xk,2, . . . , xk,nk

]
is processed. The goal is then to calculate posterior distribution

pk
(
g | y1:k

)
=N

(
g; µg

k , Cg
k

)
(9)

at time k, where y1:k =
[
y1, y2, . . . yk

]
, by combining the new observations yk with the distribution

pk−1
(
g | y1:k−1

)
=N

(
g; µg

k−1, Cg
k−1

)
(10)

from the previous time step, which functions as a prior in Bayesian setting. Calculation of the posterior
pk

(
g | y1:k

)
is performed in two steps:

Inference: calculating the joint prior pk−1
(
g, gk | y1:k−1

)
given the prior (10),

Update: updating the joint prior with new observations and integrating out gk.

In summary, RGP algorithm operates by means of the following set of equations

Jk = k(Xk, X) k(X, X)−1, (11)

µp
k = m(Xk) + Jk

(
µg

k−1 − m(X)
)
, (12)

Cp
k = k(Xk, Xk) + Jk

(
Cg

k−1 − k(X, X)
)

J>k , (13)

Gk = Cg
k−1 Jk

(
Cp

k + σ2I
)−1

, (14)

µg
k = µg

k−1 + Gk
(
yk − µ

p
k

)
, (15)

Cg
k = Cg

k−1 − Gk JkCg
k−1. (16)

The equations (11) – (13) perform the inference step and serve for function value predictions gk at
locations Xk using previous estimate µg

k−1. Equation (13) provides covariance matrix of the predictions.
The equations (14) – (16) perform the update step, where the first two moments of the posterior (9) are
updated using the last observations yk. For detailed explanations and derivation of the equations (11) –
(16) reader is referred to the original article [16].

3.2. Ad-hoc online learning procedure
RGP algorithm is able to perform GP regression recursively. However, the problem of online hyper-
parameter learning still stands. One possibility would be utilization of the RGP* algorithm [22], which
is able to learn the hyper-parameters in recursive manner in addition to recursively performing the GP
regression. Nonetheless, RGP* algorithm proved to be challenging for implementation. For this reason
we resort to tackling the online hyper-parameter learning problem by the following ad-hoc procedure.

Typically, to find an optimal setting of the hyper-parameters θ, the logarithm of marginal likelihood

log p
(
Yk |Xk, θ

)
= −

1
2

[
Y>k

(
Kθ +σ2

e I
)−1

Yk + log
∣∣∣∣Kθ +σ2

e I
∣∣∣∣ + n log

(
2π

)]
(17)

is maximised, where Kθ = k(Xk,Xk). The advantage of the marginal likelihood maximisation is that it
produces optimal values that do not result in the model over-fitting or under-fitting. The disadvantage
is that the optimisation problem is non-linear which makes finding of the global maxima practically
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impossible. It is helpful to point out, that the objective function (17) is a function of θ, where the data
(noisy observations Yk at locations Xk) are given. In sequential framework these quantities represent all
the currently available data up to a certain time step.

The idea of the proposed ad-hoc approach lies in the treatment of the current estimate of the latent
function values µg

k as perfect observations. In practical terms this entails modification of the marginal
likelihood objective function (17), whereby the noisy observations Yk are replaced with the perfect
observations µg

k at basis vector locations X. Thus we obtain the following objective function

log p
(
µg

k |X, θ
)

= −
1
2

[(
µg

k

)>
K−1
θ µ

g
k + log

∣∣∣Kθ∣∣∣ + s log
(
2π

)]
, (18)

which is maximized in every time step using iterative optimization solver, with the initial starting point
set to the hyper-parameter estimate obtained in the previous time step. With maximum number of solver
iterations fixed, the computational burden associated with hyper-parameter estimation is kept bounded.
The notation Kθ emphasizes the fact that the prior covariance matrix is a function of hyper-parameters θ.

3.3. Non-linear system identification with RGP
The unknown non-linear stochastic system to be identified (1) is modelled by the GP prior. This can be
written in the following way

M : ŷk+1 ∼ GP
(
m, k

)
, (19)

where ŷk+1 is the prediction of system output at the next time step. Let Xa =
[
xa

1, . . . , xa
s

]
be a

D × s matrix, where each column is a vector of regressors of dimension D = ny + nu + 1 and let
X =

[(
Xa)> , U>

]>
, where U =

[
u1, . . . , us

]
is the last row of (D+1) × s basis vector matrix X. The first

two moments of the GP prior were chosen as

m
(
xp

)
≡ 0, (20)

k
(
xp, xq

)
= k f

(
xa

p, xa
q

)
+ kg

(
xa

p, xa
q

)
upuq + kn

(
xa

p, xa
q

)
, (21)

where

k f
(
xa

p, xa
q

)
= s2

f exp
(
−

1
2

(
xa

p− xa
q

)>
Λ−1

f

(
xa

p− xa
q

))
, (22)

kg
(
xa

p, xa
q

)
= s2

g exp
(
−

1
2

(
xa

p− xa
q

)>
Λ−1

g

(
xa

p− xa
q

))
, (23)

kn
(
xa

p, xa
q

)
= σ2

e δpq. (24)

The quantities s f , sg are vertical lengthscales, Λ f = diag
(
λ2

f 1, . . . , λ
2
f D

)
are horizontal lengthscales and

σ2
e is the system output noise variance. The symbol δpq stands for Kronecker delta. The above mentioned

quantities are GP hyper-parameters forming a vector θ =

[
s2

f , λ f 1, . . . , λ f D, s2
g, λg1, . . . , λgD

]>
. Choice of

the form of the covariance function k
(
xp, xq

)
follows from the system description (1) and is inspired by

[23], where this particular structure of covariance was exploited to ease the derivation of control law.
The term kn models the system output disturbance as a white Gaussian noise with variance σ2

e . The
form of the covariance functions k f and kg is often called squared exponential with automatic relevance
determination, which is a common choice in a number of applications [4, 7]. This choice expresses the
assumption that the functions f and g involved in the system equation (1) are smooth, i.e. they meet the
assumption A1 from section 2.
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With GP prior specified by (20) – (24), we can now derive expressions for system output prediction
and prediction variance. Using the equations (11) – (16) we obtain

E
[
ŷk+1

]
= µp

k+1 = Jkµ
g
k , (25)

var
[
ŷk+1

]
= Cp

k+1 = kss + Jk
(
Cg

k − k(X,X)
)

Jk, (26)

where the quantities Jk, ks and kss are computed as

Jk = ks K−1, (27)

K = k f
(
Xa, Xa

)
+ kg

(
Xa, Xa

)
◦U, (28)

ks = ks f + ksg uk + ksn, (29)

kss = kss f + kssg u2
k + kssn (30)

with

ks f = k f
(
Xa, xa

k

)
, kss f = k f

(
xa

k , xa
k

)
, (31)

ksg = kg
(
Xa, xa

k

)
◦ U , kssg = kg

(
xa

k , xa
k

)
, (32)

ksn = kn
(
Xa, xa

k

)
, kssn = kn

(
xa

k , xa
k

)
, (33)

where the symbol ◦ denotes the element-wise product of two vectors. Finally, update of µg and Cg

is performed by the already familiar equations (14) – (16). Note, that we also get an estimate of the
uncertainty associated with the system output prediction, which can be of use in the control design. Also
note, that the RGP algorithm was formulated in section 3.1 as being able to process nk observations at a
time. For the system identification we only consider processing of one observation at a time; thus nk = 1.

To fully elucidate the workings of RGP regression algorithm with ad-hoc hyper-parameter learning
in the system identification process, the following summary is provided.

RGP identification algorithm:
Step 0: Set k← 0, initialise hyper-parameters θ0, choose basis vector locations X,

set µg
0 = 0, Cg

0 = k
(
X, X; θ0

)
,

Step 1: Generate input uk and measure the system output yk+1,
Step 2: Calculate system output prediction µp

k+1 by (25) and (26), utilizing (27) – (33).
Step 3: Calculate updated µg

k+1, Cg
k+1 from µp

k+1, Cp
k+1 using (14) – (16),

Step 4: Optimise hyper-parameters: θk+1 = argmaxθ log
(
p
(
µg

k+1 |X,θ
))

.

Step 5: k← k + 1, go to Step 1.

4. Numerical simulations
In numerical simulations the RGP was compared with the performance of the FGP on the following
benchmarking example of non-linear stochastic discrete-time system

yk+1 =
1.5yk

1 + y2
k

+

(
2 + cos

(
yk

))
uk + ek+1, (34)

where the sequence ek is a zero-mean white Gaussian noise with variance σ2
e = 0.025. In this case the

vector of regressors xk =
[
yk−1, uk−1

]
is two dimensional. Hyper-parameters were initialised with values

θ0 =
[
0, 0, 0, 0

]> for both algorithms. As the excitation signal uk we considered uniformly random noise
within the interval [−3,3].
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Figure 1: Root mean square error.
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Figure 2: Logarithm of average predictive variance.

In case of RGP algorithm, 75 basis vectors were used to create a 15× 5 grid, that covered the area
of state space, where the system operates. Initialisation µg

0 = 0 and Cg
0 = k(X,X) was performed

with initial hyper-parameter values in mind. Ad-hoc hyper-parameter optimisation routine was started
with the estimate obtained in previous iteration. The FGP was trained using all available data up to the
current time step, where the hyper-parameter optimisation routine was always started with initial values
θ0. Hyper-parameter optimisation was realised using MATLAB’s fminunc() solver with the maximum
number of iterations set to 100.

The experiments performed were focused on the comparison of the two approaches in terms of
obtained GP model error and computational demands for prediction in every time step. Root mean
square error (RMSE)

RMSE =

√√√
1

Nts

Nts∑
i=1

(
yi − ŷi

)2
(35)

was used to measure the error in model validation process, where yi is the measurement of system output
and ŷi is the GP model prediction. Furthermore, the logarithm of average predictive variance

LOGVAR = log

 1
Nts

Nts∑
i=1

var
(
ŷi
) (36)

was used to quantify the overall model prediction uncertainty. Both metrics were calculated at each of
the N = 300 time steps using Nts = 1600 test points, which were obtained from the system operation. The
computational demand is assumed to be the sum of the time required for obtaining the current hyper-
parameter estimate and the time required for computing the one-step ahead prediction (model response).
This was implemented by employing MATLAB’s tic/toc command functionality and results recorded
for every time step. 100 MC simulations were run with the results shown in figures.

As seen in figure 1, RMSE of the FGP is slightly lower than that of the RGP algorithm. This can be
caused by the fact, that the RGP uses for prediction a fixed amount of predefined basis vectors. The FGP,
however, makes predictions based on all available past data points. The main drawback of the RGP is
that, when prediction is to be made further away from the area covered by the basis vectors, it’s quality
will be significantly worse than that of the FGP. Development of the LOGVAR in figure 2 suggests, that
predictions of the RGP algorithm are less confident than those of the FGP. Figure 3 compares the system
and model response during training. Note how the model response approaches the true system response

European Workshop on Advanced Control and Diagnosis IOP Publishing
Journal of Physics: Conference Series 570 (2014) 012002 doi:10.1088/1742-6596/570/1/012002

7



−10

0

10

20 40 60 80 100 120 140

−10

0

10

Figure 3: System response (dashed) compared to the RGP (top) and FGP (bottom) model response
with the increasing amount of data used for system identification (GP model training). The grey band
represents the model uncertainty.
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Figure 5: Computation time per iteration.

and the model uncertainty is reduced as the amount of data used for identification increases. Figure 4
shows converging estimates of each of the hyper-parameters as the number of available data for system
identification (GP model training) increases. Estimates may not always converge to the same value since
the marginal likelihood has multiple local extrema. The figure 5 demonstrates the unsurprising fact, that
the RGP algorithm, owing to it’s recursive nature and limited number of solver iterations, has constant
computational demands per time step. On the contrary, time requirements of the FGP algorithm for
prediction increase with every time step regardless of the limited number of solver iterations.

5. Conclusions
In this paper, we proposed use of the RGP algorithm with an ad-hoc hyper-parameter learning procedure
for the non-linear system identification. The RGP algorithm was compared with the FGP approach
in terms of computational demands per iteration as well as the RMSE and the logarithm of average
predictive variance. The ad-hoc learning procedure provides converging hyper-parameter estimates. In
performed simulations it was demonstrated that use of the RGP algorithm is clearly superior to the FGP
approach in terms computational demands. Compared to the FGP, the RGP algorithm provides more
conservative predictions and achieves comparable RMSE, though exhibits slower convergence. Main
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disadvantage of the RGP algorithm is that the number of basis vectors increases exponentially with the
dimension of the state space (vector of regressors). Also, quality of predictions at the locations further
away from the area of state space covered by the basis vectors is worse than those of the FGP.

Future research activity will be aimed at incorporating the RGP identification algorithm into the
functional dual adaptive control loop.
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