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Abstract. The electric quadrupole transitions between 0+, 2+, and 4+ states in 8Be and
12C are investigated by discretization of the continuum with a box boundary condition. The
γ-emission cross sections and the corresponding transition strengths are computed. The
consistency of these transition strengths with the expected behavior for transitions between
states in a rotational band is investigated.

1. Introduction

In this work we investigate the spectra of 8Be and 12C, understood as a two-alpha and a
three-alpha system, respectively. In particular, we focus on the electric quadrupole γ-emission
processes between the states in these two spectra. Experimentally it is well known that in
both nuclei, 8Be and 12C, it is possible to identify several sequences of states with angular
momentum and parity 0+, 2+, and 4+. This fact strongly suggests that these sequences of
states could correspond to states in a rotational band. The goal of this work is to investigate
the rotational character of the spectra, and, at the same time, extract as much information as
possible about the continuum properties of 8Be and 12C.

We first calculate cross sections defined by specified initial and final state energies. From
the cross sections we can obtain the B(E2) transition strengths. These strengths are used to
investigate the rotational character of the spectrum. A rotational band is defined as the sequence
of states arising from quantization of the rotational motion of an (almost) frozen deformed
structure. This leads to the well-known sequence of excited states with energies following the
J(J + 1)-rule where J is the angular momentum quantum number. However, this behavior of
the energy spectrum is not enough. The wave functions for different angular momenta should
simultaneously describe the same rotating structure. This condition leads to electromagnetic
transition probabilities from one of these states to another given by simple geometric factors
depending only on the angular momentum quantum numbers. In this work we investigate to
what extent the spectra of 8Be and 12C fulfill this condition for the transition strengths.

We also investigate the dependence on the initial and final state energies and on the chosen
α − α interaction. In fact, even if two different two-body potentials reproduce equally well the
α−α phase shifts, they can still give rise to two-body wave functions with different short-distance
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behavior. This different behavior at short distances could produce different cross sections, since
the radial matrix element of the electromagnetic operator is a crucial ingredient.

2. Theoretical procedure: Cross sections

At the two-body level, given an initial continuum state with energy E and angular momentum J ,
the cross section for a γ-transition into some other continuum state with energy E′ and angular
momentum J ′ is given by [1]:
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where Ja and Jb are the angular momenta of the two particles, Eγ = E − E′ is the photon
energy, λ is the multipolarity, ν is the number of identical particles, and k2 = 2µabE/h̄2, where
µab is the reduced mass of the two-body system made of particles a and b.

For three-body systems the expression analogous to the one above takes the form [2]:
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where again, Ja, Jb, and Jc are the angular momenta of the three particles, and κ2 = 2mE/h̄2,
and m is the normalization mass used to define the Jacobi coordinates.

The double differential transition strength contained in Eqs.(1) and (2) is given by:
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where ΦJ(E) and ΦJ ′(E′) are the initial and final continuum two- or three-body wave functions,

and Ôλ is the electromagnetic operator with multipolarity λ.
The total cross section for a scattering process with incident energy E is obtained after

integration of Eq.(1) or (2) over E′. However, to integrate over all possible final energy values
does not make much sense. In fact, experimentally the final energy is restricted to some energy
window, ∆E′, which is taken around the energies of interest, typically the resonance energies.
In particular, since resonances do not have a well defined energy we have that given an initial
energy E we have to consider the transitions into all the states within some energy range around
the resonance energy. In this work we choose this energy window as ∆E′ = E′

R ±Γ′

R, where E′

R

is the energy of the resonance and Γ′

R is the resonance width. Obviously, this choice is a matter
of taste, and therefore there is always an ambiguity in the definition of the cross section.

An important point is that the calculations are made on the real energy axis. The wave
functions in Eq.(3) are continuum wave functions at a certain energy, and there is no particular
treatment of the resonances. Therefore, in order to know the position and the width of the
final-state energy windows it is necessary to obtain by some other procedure the energy and
width of the resonances. In this work this is made by use of the complex scaling method.

As a final technical remark, let us mention that since we are dealing with continuum states,
they should be normalized in the continuum sense, i.e., in terms of a Dirac delta. This can be
easily implemented at the two-body level, since in this case the asymptotic behavior of the wave
function for two charged particles in the continuum is well known. However, for three charged
particles this is not true anymore, and the correct normalization of the continuum three-body
wave functions becomes a very delicate task. For this reason, for 12C it is much more convenient
to discretize the continuum spectrum, for instance by imposing a box boundary condition. When
done, the “discrete” continuum wave functions are normalized in terms of a Kronecker delta,
just like bound states. The details about the equivalence of these two methods can be found in
Ref.[3], and it is illustrated in Fig.1 for the case of the 4+ → 2+ transition in 8Be.
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Figure 1. Cross section for the 4+ → 2+

transition in α + α scattering as a function
of the incident energy E. The curves are
obtained after integration of Eq.(1) over the
final energy E′ within the energy window
∆E′ = 3 ± 1 MeV. The big panel shows
the results with and without discretization
of the continuum (solid and dashed curves,
respectively). The discretization has been
made in a box with a size of 1000 fm. The
inset shows the results obtained for different
sizes of the discretization box.

3. Transition strengths

In this section we discuss the B(E2) transition strengths obtained for 8Be and 12C. The results
reported here have been obtained using the Ali-Bodmer α − α potential specified in Ref.[4].
No relevant differences have been found when the Buck potential is used. For both nuclei a
previous complex scaling calculation has been performed in order to determine the corresponding
resonance energies and widths, which are obtained as poles of the S-matrix. For 8Be a sequence
of 0+, 2+, 4+, 6+, and 8+ resonances are found [4]. The computed energies and widths of the
first three resonances agree with the known experimental values. For 12C three 0+ states (the
first one bound), three 2+ states (the first one bound), and three 4+ resonances have been found
[5]. These states form three {0+, 2+, 4+} bands. The possible rotational character of the first
two bands will be investigated. The third band is excluded due to the fact that the energy of
the third 0+ state is experimentally known to be above the third 2+ state.

Table 1. B(E2) strengths (in e2fm4) for the transitions in 8Be indicated in the first column. The
second column shows the results obtained in this work. The third column gives the strengths
computed in Ref.[6]. The last two columns are the estimates given by rotational model (see text).
The numbers within parenthesis are the ratios in Eq.(6) taking the first reaction as reference.

This work Ref.[6] Rotational model
Z0 = 3 fm Z0 =

√

〈r2〉

2+ → 0+ 79.1 (1) 71.3 (1) 6.4 (1) 84.0 (1)
4+ → 2+ 22.1 (0.28) 18.0 (0.25) 9.2 (1.43) 18.1 (0.22)
6+ → 4+ 10.1 (0.13) – 10.1 (1.57) 9.1 (0.11)
8+ → 6+ 13.0 (0.16) – 10.6 (1.65) 7.6 (0.09)

The differential E2-transition strengths, dB(E2)/dE, have been obtained by integrating the
cross section in Eq.(1) for 8Be, and in Eq.(2) for 12C, over E′, with E′ restricted to the final
energy window ∆E′ = E′

R ± Γ′

R, where E′

R and Γ′

R are the energy and width of the final
state resonance. Subsequently, the integrated cross section is divided by all the factors that in
Eqs.(1) and (2) multiply the differential transition strength. Finally, the total strength B(E2)

for a transition between some specific initial state into the selected final state is obtained after
integration over the initial energy E, where, as in the case of E′, the energy E is limited to the
corresponding energy window around the initial resonance energy.
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For 8Be, the computed transition strengths between the different states are given in the
second column of Table 1. The computed values for the 2+ → 0+ and the 4+ → 2+ reactions
agree with the results given in Ref.[6], where a cluster model was also used. Also, the 22.1 e2fm4

obtained for the 4+ → 2+ transition agrees with the experimental value of 25±8 e2fm4 reported
in Ref.[7].

For 12C, the computed transition strengths are given in the third column of Table 2. For
those reactions involving the second 2+ state (the lowest 2+ resonance), two different results
are given, which correspond, respectively, to placing the resonance energy at 1.8 MeV and 2.5
MeV. The first energy corresponds to the three-body calculation such that a phenomenological
three-body force is used to fit the experimental separation energy of the bound 2+ state, and
in the second case the three-body force is weakened in order to obtain a resonance energy in
better agreement with the recent experimental value given in Ref.[8]. In the second column of
the table the available experimental data are given.

Table 2. B(E2) strengths (in e2fm4) for the transitions in 12C indicated in the first column. The
available experimental data are given in the second column. The third column are the results in
this work. For the cases where the second 2+ state enters the results for two energies of the 2+

resonance are given. The fourth and fifth columns are the strengths given in Refs.[9] and [10],
respectively. The last column is the prediction by the rotational model.

Transition Exp. [9, 11, 8] This work Ref.[9] Ref.[10] Rot. model

2+
1 → 0+

1 7.6 ± 0.4 10.6 9.16 8.4 18
4+
1 → 2+

1 14.5 15.8 25

E2+=1.8 MeV E2+=2.5 MeV
2+
2 → 0+

2 153 185 102 155
4+
2 → 2+

2 0.6 1.7 595 185

2+
1 → 0+

2 2.6 ± 0.4 1.1 0.84 5.1
4+
1 → 2+

2 3.6 5.2 7.5
2+
2 → 0+

1 0.73 ± 0.13 2.6 1.8 1.99 0.4
1.57 ± 0.14

Our results agree reasonably well with the cluster-model calculations described in Ref.[9]
(fourth column in the table). When compared to the AMD calculations in Ref.[10] significant
differences are observed for some of the reactions, specially for the 4+

2 → 2+
2 transition.

Unfortunately, in Ref.[9] this transition was not considered.
For the 2+

2 → 0+
1 transition the experimental values given in Table 2 are taken from

Refs.[11, 8], which are obtained after photo-dissociation of the 12C ground state. The
experimental data, whose analysis is obviously still to be clarified, are shown by the square
and the circles in Fig.2, respectively. The solid and dashed curves in the figure are the cross
sections obtained with the Ali-Bodmer and Buck potentials. As seen in the figure, the shape of
the cross section is nicely reproduced. However, in order to get this agreement the computed
curves have been divided by a factor of three. This point reflects the fact that a description of
the 12C ground state as a three-alpha system is not appropriate, and only a small component of
the ground state wave function corresponds to such structure.
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Figure 2. Photo-dissociation cross section
for the 12C+ γ → α+ α+ α reaction between
the 0+ ground state and the continuum 2+

states as a function of the photon energy.
The computed curves have been divided by
a factor of 3. The experimental data are from
Refs.[8, 11]. Only the results with the 2+

resonance at 2.5 MeV are shown.

4. Rotational model

For transitions between states within a rotational band the quadrupole strength is given by

B(E2)(J → J ′) =
5

16π
e2Q2

0〈J0; 20|J ′0〉2, (4)

where the rotational band has been assumed to zero projection of the angular momentum over
the intrinsic symmetry axis, and where the intrinsic quadrupole moment Q0 is given by:

Q0 =
4

3
〈
∑

i

Zir
2
i 〉δ, (5)

where i runs over all the charged particles (with charge Zi and center of mass coordinate ri)
and δ is the deformation parameter. From the definition above we have that Q0 = 4δ〈r2〉/3 and
Q0 = 2δ〈ρ2〉/3 for a two-α and a three-α system, respectively, where r is the relative distance
between the two particles, and ρ is the hyperradius defined in the three-body system.

The intrinsic quadrupole moment Q0 is the same for all the states in the band, which is
related to the frozen structure of a rotating rigid rotor. Therefore, it is clear that for transitions
between states in a rotational band the following ratio between transition strengths holds:

B(E2)(J → J ′)

B(E2)(J̃ → J̃ ′)
=

〈J0; 20|J ′0〉2

〈J̃0; 20|J̃ ′0〉2
. (6)

In Ref.[3] it is shown how the average distance between the two alpha-particles in 8Be is
far from being constant for the different resonances. In fact, if a constant distance of 3 fm is
assumed, the rotational estimate given by Eq.(4), which is given in the fourth column in Table 1,
clearly disagrees with our results (second column). In the table we show within parenthesis the
results of the ratios in Eq.(6) when the first transition is taken as a reference. Nevertheless, if we
compute the intrinsic quadrupole moment in Eq.(5) using the different computed α-α distance
for each resonance, and this value is used in Eq.(4), we then get the transition strengths and
ratios given in the last column of Table 2. These results agree much better with our calculations.
Therefore, the 8Be spectrum has a rotational character provided that the α-α distance is angular
momentum dependent, and the principal α-cluster structure is maintained.

About 12C, it is found that the computed value of 〈ρ2〉 is reasonably constant for the 0+, 2+,
and 4+ states belonging to each of the two bands under investigation. This is consistent with
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the expected constant intrinsic quadrupole moment for all the states within a rotational band.
Using the computed values of 〈ρ2〉, see Ref.[5], we obtain by means of Eq.(4) the transition
strengths shown in the last column of Table 2.

For the two transitions within the first band, 2+
1 → 0+

1 and 4+
1 → 2+

1 , the values obtained
with the rotational picture agree reasonably well with our calculation. The agreement would be
even better if we use the known relation between the static and intrinsic quadrupole moments,
which permit us to estimate the deformation parameter, which is found to be δ2 ≈ 0.55. Using
this value we get that the rotational picture predicts transition strength values of about 10 e2fm4

and 14 e2fm4 for these two transitions.
For the transitions within the second band, 2+

2 → 0+
2 and 4+

2 → 2+
2 , the situation is different.

For the first of them we can consider that our calculations and the rotational estimate agree.
However, our results for the 4+

2 → 2+
2 transition and the rotational estimate are very far

from each other. One could think that a very small deformation parameter could correct the
problem, but that would imply to break the reasonable agreement found in the 2+

2 → 0+
2 case.

Simultaneous agreement between our calculations and the rotational picture for the two reactions
is not possible.

For completeness in the lower part of Table 2 we show the strengths corresponding to several
transitions between states located in different bands.

5. Conclusions

In this work continuum to continuum transitions are used to investigate the properties of the
8Be and 12C spectra. The rotational character of the {0+, 2+, 4+, · · ·} bands is investigated.

We have found that the idea of 8Be as a rigid rotor of two α-particles at a fixed distance
is questionable. This picture does not agree with the computed transition strengths. However,
if the distance between the two particles is allowed to depend on the angular momentum, the
agreement is then good.

For 12C the conclusion is that the E2-transition strengths between the 0+
1 , 2+

1 , and 4+
1 states

are consistent with the behavior expected for states that belong to a rotational band. For the 0+
2 ,

2+
2 , and 4+

2 states only the strength corresponding to the 2+
2 → 0+

2 transition can be considered
to agree with a rotational behavior, but the 4+

2 state does not seem to belong to such rotational
band, since the strength for the transition into the 2+

2 state is much smaller than the expected
rotational value.
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