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Abstract. We report our recent applications of the correlated Gaussian (CG) method to
nuclear four- and five-body systems: (I) Spin-dipole response functions of 4He and (II) 16O
as a 12C+n + n + p + p five-body model. The CG is flexible to describe complex few-nucleon
dynamics. The above examples actually demonstrate the power of the CG, giving a simultaneous
description of both four-nucleon bound and unbound states using a realistic nuclear force, and
both shell- and cluster-configurations in the ground and first excited 0+ states of 16O.

1. Introduction
Since the wave function has all information of a non-relativistic quantum system, we try to
solve the many-body Schrödinger equation as precise as possible within present computational
resources. A correlated Gaussian (CG) method is powerful and flexible to describe complex
few-body dynamics, e.g., describing different types of structure and correlated motion of the
particles, and accurately describing the tail of the wave function in the asymptotic region. The
method has been applied to not only in nuclear physics but also in other quantum mechanical
fields (See recent review [1]). Here we present our progress and recent applications of the CG
method to nuclear four- and five-body systems.

In the first topic, we calculate the spin-dipole (SD) response functions of 4He [2] with a
full four-body calculation using realistic nuclear forces. The excited states of 4He are all in
the continuum and are treated properly with the complex scaling method. The SD operator
belongs to the first-forbidden transition induced by the weak interaction and is expected to play
a significant role for neutrino-4He reactions. The SD operator can change the spin wave function
of the ground state and has three possible multipoles. We show that these properties of the SD
operator can be used to probe the role of noncentral forces, especially the tensor force.

The second topic is a 12C+n+ n+ p+ p five-body calculation for the spectrum of 16O [3]. A
simultaneous description of the ground and first excited 0+ states of 16O is one of the outstanding
and challenging problems in nuclear theory. The ground state of 16O has been recognized as
having a doubly closed shell model configuration, and thus the first excited state is expected
to have the negative parity state in accordance with the particle-hole excitation but actually
observed as 0+ state. Many theoretical works are devoted to understand this ’mysterious’
state, however, the state has not been reproduced microscopically even in modern large scale
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calculations [4]. Since a fully microscopic calculation is not practical at present, it is interesting
to perform the five-body calculation without assuming an alpha cluster.

The paper is organized as follows: Section 2 briefly explain the CG method used in this
paper. Two recent applications of the nuclear four- and five-body systems are presented in
Section 3. In Section 3.1 the calculation of the SD strength functions are presented. We show
the possibility to probe the tensor correlations with the SD excitations. Section 3.2 presents
converged results of a 12C+four-nucleon five-body calculation and discusses the coexistence of
shell- and cluster-configurations in the spectrum of 16O. Summary and conclusions are given in
Section 4.

2. Correlated Gaussian method
A trial wave function in a variational method for nuclear few-body problems has to be flexible
enough to cope with the short-range repulsion and strong tensor force as well as different types
of structure and correlated motion of the particles. A total wave function with the angular
momentum J , its z component MJ , parity π, and isospin quantum numbers T, MT is expressed
as a combination of various components of orbital and spin angular momenta. Here the basis
function we use takes a general form in LS coupling scheme

Φπ
(LS)JMJ ,TMT

= A [φπ
L × χS ]JMJ

ηTMT
, (1)

where A is the antisymmetrizer, and the symbol [φπ
L × χS ]JMJ

stands for angular momentum

coupling. The total spin (isospin) function χS (ηT ) is constructed by a successive coupling of
all spin (isospin) functions of a nucleon.

For the spatial part of the basis function, φπ
L, we use the CG. Let x=(xi) denote a set of the

Jacobi coordinates excluding the center-of-mass coordinate. We express φπ
L as a combination of

CG [5, 6] and the two global vectors [7]

φπ
(L1L2)LML

(A, u1, u2) = exp(−x̃Ax)[YL1(ũ1x)× YL2(ũ2x)]LML
(2)

with a solid harmonic Y`(r) = r`Y`(r̂). Here x̃Ax =
∑

i,j Aijxi ·xj and ũix =
∑

k(ui)kxk, where
the positive-definite symmetric matrix A, the vectors of u1 and u2 are variational parameters. It
is noted that all coordinates are explicitly correlated through them. Both u1 and u2 define the
global vectors, ũ1x and ũ2x, that are responsible for the rotational motion, as shown in Eq. (2).
When a realistic nucleon-nucleon (NN) potential is used, the tensor force mixes different angular
momentum components in the wave function. With the two global vectors, any Lπ states but 0−

can be constructed with a suitable choice of L1 and L2. The power of the CG basis of type (2)
has been demonstrated by many examples [7, 8, 1]. An advantage of the CG is that it keeps
its functional form under a linear transformation of the coordinates [5, 6], which is a key for
describing both cluster and delocalized structure in a unified manner.

3. Application to nuclear four- and five-body systems
3.1. Electroweak response functions of 4He
The Hamiltonian of four-nucleon system consists of two- and three-nucleon forces. As an NN
potential, we employ the Argonne v8′ [9] (AV8′) potential which contain central, tensor and
spin-orbit components. The central component includes a strong short-ranged repulsion near
the origin. We add a phenomenological three-body interaction (3NF) [10] that is set to reproduce
the binding energies of the three- and four-nucleon bound states.

A spin-dipole (SD) response function of interest is given by

S(p, λ,E) = Sfµ |〈Ψf |
4∑

i=1

[ρi × σi]λµ T
p
i |Ψ0 〉|2 δ(Ef − E0 − E) with ρi = ri − x4, (3)
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where ri is ith nucleon coordinate, x4 is the center-of-mass coordinate of the four-nucleon system,
and σi is ith nucleon spin. The SD operator is specified by λµ with the angular momentum
coupling of ρi and σi. The superscript p of T p

i distinguishes different types of isospin operators,
isoscalar (p =IS) and isovector (p =IV0). The Ψ0 (Ψf ) is the ground (final) state of 4He
with the energy E0 (Ef ), and Sfµ denotes a summation over all final states and µ. For the
continuum wave function, we use a square-integrable (L2) basis function which does not satisfy
a proper boundary condition of continuum state. To treat it properly, we use the complex
scaling method (CSM) which is a widely used method for calculating the strength function in a
nuclear system [11]. The accuracy of the CSM calculation crucially depends on how completely
the L2 basis functions are prepared. We attempt at constructing the basis paying attention to
two points: the sum rule of the electroweak strength functions and the decay channels [12, 2].
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Figure 1. Left: Isovector SD strength functions of IV0 type and E1 strength function for 4He
as a function of excitation energy. The AV8′ + 3NF potential is used. Right: The same plot as
the left but isoscalar SD strength functions of IS type. The figures are plotted based on Ref. [2].

The left panel of Fig. 1 plots the SD strength functions of IV0 type with the AV8′ + 3NF
potential. For the sake of comparison, the electric dipole (E1) strength function is also plotted

by choosing the E1 operator as
∑N

i=1 ρiµ
1
2(1−τz(i)). As seen in the figure, the three SD strength

functions show narrower widths at their peaks than the E1 strength function. Moreover their
peak positions including the E1 case well correspond to the observed excitation energies of the
four T = 1 negative-parity states of 4He [13].

We display in the right panel of Fig. 1 the IS SD strength functions that reflect the JπT = λ−0
continuum states of 4He. These IS SD strength functions, especially for the 0− and 2− cases,
show much narrower distribution than the IV0 strength functions. These peak energies again
appear to correspond to the observed T = 0 negative-parity levels in 4He. A close comparison
between the IS and IV0 strength functions indicates that the 0− case is noteworthy compared
to the 1− and 2− cases in that the difference in the peak positions of the same J− becomes
much larger. As discussed in Refs. [8, 14], the reason for this is understood by analyzing the
role played by the tensor force.

The resonance energy may be identified as the energy where the peak is located. We also
estimate the decay width of the resonance by the difference of two excitation energies at which the
strength becomes half of the maximum strength at the peak. The agreement between theory and
experiment is very satisfactory [2]. The average deviation of the calculated resonance energies
from experiment is less than 0.4 MeV for 4He despite the fact that most of their widths are
larger than 5 MeV. The estimated width is also in reasonable agreement with experiment.

Here we discuss the non energy-weighted sum rule (NEWSR) for the SD operator. The use of
the closure relation enables us to express the NEWSR to the expectation value of the operator
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∑
µO

p†
λµO

p
λµ with respect to the ground state Ψ0. It is convenient to express that operator

as a scalar product of the space-space and spin-spin tensors, Qp
(κ)0 =

∑A
i,j=1

(
[ρi × ρj ]κ · [σi ×

σj ]κ
)
T p
i
†
T p
j , where the rank κ can be 0, 1, and 2. With use of the above equation, the expression

of the NEWSR is

m0(p, λ) ≡
∫ ∞

0
S(p, λ,E)dE =

2∑
κ=0

Uλκ〈Qp
(κ)0〉. (4)

The NEWSR is fully satisfied: the deviation of the NEWSR from the right hand side of
Eq. (4) is less than 1%. This means that the basis functions prepared for the description of the
SD excitation are sufficient enough to account for all the strength in the continuum. Among
the three expectation values of 〈Qp

(κ)0〉 in Eq. (4), the κ = 0 term gives a dominant contribution

to the NEWSR because the major component of the ground state of 4He is S = 0 and it has
a non-vanishing expectation value only for Qp

(0)0. In this limiting case m0(p, λ) is proportional

to Uλ0. Therefore the λ-dependence of the NEWSR turns out to be 1 : 3 : 5 for λ = 0, 1, 2,
independently of p. The deviation from this ratio is due to the contributions of otherQp

(κ)0 terms,

especially the κ = 2 term. Since the admixture of the S = 2 component is primarily determined
by the tensor force, the deviation reflects the tensor correlations in the ground state. The term
with κ = 2 is particularly interesting because it contains the tensor operator characteristic of
the one-pion-exchange potential. Since 〈Qp

(2)0〉 is negative for p = IS, the ratio further increases

from 1 : 3 : 5, which is approximately 1 : 4 : 7, whereas it is positive for p = IV0 and the ratio
approximately reduces to 1 : 2 : 4.

As discussed above, 〈Qp
(κ)0〉 plays a central role to determine the NEWSR for the SD strength

functions. Inverting the right hand side of Eq. (4) makes it possible to express 〈Qp
(κ)0〉 as a sum,

over the multipole λ, of the NEWSR, 〈Qp
(κ)0〉 =

∑2
λ=0 U

−1
κλm0(p, λ), where U−1 is the inverse

matrix of U . If the NEWSR for all λ are experimentally measured, the above equation indicates
that 〈Qp

(κ)0〉 for all κ can be determined from experiment.

3.2. A 12C+n+ n+ p+ p five-body model for 16O
Let us move to the 16O problem. A five-body system we consider here is characterized by
the Hamiltonian which consists of an NN potential Vv for valence nucleons and a 12C-nucleon
(CN) potential Vcv. A central Minnesota (MN) potential [15] is employed as the NN potential.
To fine tune the binding energy of the α particle, the potential strengths are multiplied by
0.9814. Symmetrized Woods-Saxon and its derivative forms are assumed for the CN potential,
and their parameters are determined to reproduce the low-lying spectrum of 13C with 1/2−,
1/2+, and 5/2+. Our CN potential is deep enough to accommodate some redundant or Pauli-
forbidden states. To eliminate such states we impose the orthogonality constraint for the relative
motion of the valence nucleons, which is practically achieved by adding a pseudo potential to
the Hamiltonian [16]. Here we assume the harmonic oscillator (HO) wave functions of 0s1/2 and

0p3/2 as the occupied orbits of 12C. The HO frequency is set to be 16.0 MeV, which reproduces

the size of the 12C ground state. The core excitation is ignored in this calculation.
We express the wave function in terms of a linear combination of many CG states of Eq.

(2). Each basis element contains so many variational parameters that discretizing them on grids
leads to an enormous dimension of at least 1010. Thus we test a number of candidate bases
with the stochastic variational method [5, 6], choose the best one among them and increase the
basis dimension one by one until a convergence is reached. This procedure costs expensively
for computer time but no other viable methods are at hand to get converged solutions for the
present problem.
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The left panel of Fig. 2 displays the calculated energy curves of the ground (0+1 ) and first
excited (0+2 ) states of 16O as a function of the number of basis functions. Convergence is very
slow and more than 9000 basis states are needed. This number is very large compared to a four-
nucleon system with the same MN interaction that requires only few tens of basis states [5]. The
most basis states are used for eliminating the forbidden states. This is because, when the valence
nucleons are strongly correlated, the basis states may have a large overlap with the forbidden
states, and thus more basis states are needed to get a converged solution. After the convergence
two 0+ states appear below 12C+α threshold and their energies are both remarkably close to
experiment.
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Figure 2. Left: Energy curves for the ground and excited 0+ states of 16O. The calculated
12C+α thresholds and experimental energies are plotted with thin lines. The figure is plotted
based on the data of Ref. [3]. Right: Expectation values of Vcv and Vv of the two 0+ states of
16O as a function of the number of basis dimensions.

We found that the total energies for the ground and first excited 0+ states of 16O are in good
agreement with experiment. The decomposition tells us information on the correlated structure
of the valence nucleons. The right panel of Fig. 2 plots the expectation values of Vcv and Vv

as a function of the number of basis dimensions. The energy curve for the 0+1 state changes
drastically at 4000 to 6000 basis states where the energy crosses over the 12C+α threshold. We
expect a phase transition from the cluster structure to shell-model like structure at this basis
dimension. Beyond 8000 basis states where the energies are close to the convergence, the 〈Vcv〉
value turns out to be dominant. In the 0+1 state, the CN potential gives the major contribution
to the energy 〈Vcv〉 = −79.55 MeV, whereas 〈Vv〉 is approximately a half of it (−40.41MeV). It
is found that the 〈Vv〉 value is approximately a half of the NN contribution of the free alpha
particle obtained with the MN potential (−85.22MeV). The alpha particle is influenced and
strongly distorted by the attraction, kinetic energy, and Pauli constraint from the core nucleus.

In the case of the 0+2 state, in contrast to the ground state, 〈Vv〉 is large, keeping a constant
value shown in the right panel of Fig. 2. The converged 〈Vcv〉 is small −29.22MeV compared
to the contribution of the valence nucleons 〈Vv〉 = −74.92MeV, which is very close to that of
the free alpha particle. This suggests that the 0+2 state has a well developed 12C+α structure
as predicted by the cluster model [17]. It is interesting to note that 〈Vcv〉 of the 0+1 state is
similar to 〈Vv〉 of the 0+2 state. Due to the balance of the core-nucleon and the valence nucleons
contributions, the two 0+ states appear at closely to each other, and thus the two different
aspects coexist in the spectrum of 16O.

For more quantitative discussion of the clustering degree, we calculate the 12C+α
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spectroscopic amplitude of 16O defined by

y(r) =
1

r2

〈
φαφI=0(

12C)δ(R− r)Y00(R̂)
∣∣∣Ψ00(

16O)
〉
, (5)

where Ψ00(
16O), φI=0(

12C), and φα are the wave functions of 16O, 12C core, and the free alpha
particle obtained by a four-body calculation with the MN potential, respectively; and R is a
distance operator between the center-of-mass of the alpha and 12C. The left panel of Fig. 3
displays the calculated spectroscopic amplitudes for the two 0+ states of 16O. At the short
distances, we see some oscillations due to Pauli principle of 12C+α. For the 0+1 state, the
highest peak is located at around 4 fm. That is smaller than the touching distance of 12C+α
(∼ 5.9 fm). In such a case, the alpha particle may be distorted by the core nucleus. In fact,
a spectroscopic factor S2

α =
∫∞
0 (ry(r))2dr is small (0.105), whereas the 12C+α cluster model

calculation gives 0.300 [17]. In this study, we do not assume the alpha cluster, and thus the
distortion of the alpha cluster shows up naturally. In the 0+2 state, the amplitude is much
larger and peaked at the touching distance of 12C+α, showing very long tail which suggests the
well developed cluster structure. The spectroscopic factor is 0.680 which is in agreement with
the value of the 12C+α calculation, 0.679. The phase space of the first excited state of 16O is
exhausted by the 12C+α cluster component.
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Figure 3. Left: Spectroscopic amplitude of the ground and excited 0+ states of 16O. Right:
Decomposition of the ground and first excited states of 16O wave functions into components
having the harmonic oscillator quanta Q. The figures are plotted based on the data of Ref. [3].

Why is it so difficult to describe the 0+2 state with the ordinary shell model truncation? To
answer this, it is useful to calculate the probability distribution of the harmonic oscillator (HO)
quanta Q in our wave functions. The right panel of Fig. 3 plots the histogram of the HO quanta
for the ground and first excited states of 16O. Oscillator frequency is set to be the same as the
forbidden states in the 12C core. For the ground state, the distribution starts with Q = 4, which
may correspond to the configuration of (0p1/2)

2
ν(0p1/2)

2
π. The distribution diminishes rapidly

with increasing Q. Since a few major shell configurations are required to cover more than 90%
of the model spaces, the state may be described with the shell model picture.

As predicted by the cluster model [17], the distribution of the first excited state of 16O is
quite different from these states. Since the ground state exhausts the Q = 4 component, the
component for the excited state becomes small approximately 10%. The HO quanta are again
peaked at Q = 12 and widely distributed showing still undiminished probability at Q = 30. If we
can cover the HO model space up to the second peak position Q = 12, accumulated probability
is still 47%. Therefore, it is practically difficult to describe such a state by the HO basis with
the usual major shell truncation. One needs at least Q = 26 to cover more than 90% of our
model space which is not feasible at present.
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4. Summary and conclusions
Recent applications to nuclear four- and five-body problems have demonstrated the power of
the explicitly correlated Gaussian (CG) method. Once the Hamiltonian is determined, the wave
function of the system is accurately obtained and the model has no adjustable parameter.

First, the spin-dipole (SD) responses of 4He are investigated based on the four-body
calculation using a realistic nuclear force. Both the wave function of the ground state and
the SD excitation are described accurately using the CG. The continuum states including two-
and three-body decay channels are described with aid of the complex scaling method.

Experimental data that can directly be compared to the calculation are presently only the
resonance parameters of the negative-parity levels of A = 4 nuclei. We find that peak position
and width of the SD strength function corresponds well with experimental resonant energy and
decay width, respectively. The non energy-weighted sum rule (NEWSR) of the SD strength
function is investigated by relating it to the expectation values of three scalar products of the
space-space and spin-spin tensors with respect to the ground state of 4He. It turns out that
our model space satisfies the NEWSR for each SD operator perfectly. The tensor operator of
rank 2, Qp

(2)0, is sensitive to the D-state correlation in the ground state induced by the tensor

force, and it is mainly responsible for distorting the ratio of the NEWSRs for the multipolarity
λ = 0, 1, 2 from the uncorrelated ratio of 1 : 3 : 5. An experimental observation of this ratio is
desirable since it may lead us to reveal the degree of tensor correlations in the ground state.

In the second topic, we successfully describe the ground and first excited 0+ states of 16O
in a single scheme, a 12C+four-nucleon model. The 12C-nucleon and NN potentials are chosen
to reproduce low-energy properties of each subsystem. We solve the full five-body Schödinger
equation by superposing many CG states prescribed with the stochastic variational method.

The calculated total binding energies for the ground state and first excited states of 16O are
obtained consistently with the experimental values. The ground state exhibits a shell model like
structure. However, our analyzes suggest the first excited states has a well developed 12C+α
cluster structure. The probability distributions of the harmonic oscillator quanta also support
our pictures and show the difficulty to describe the 0+2 state with the ordinary major shell
truncation of the harmonic oscillator basis. Possible and promising application is to extend our
five-body model with heavier doubly closed shell core, that is, for example, 20Ne 44,52Ti, and
212Po as is an interesting analogy to the 16O problem.
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