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Abstract. We construct a new nuclear equation of state (EOS) for core-collapse supernova
(SN) simulations using the variational many-body theory. For uniform nuclear matter, the EOS
is constructed with the cluster variational method starting from the realistic nuclear Hamiltonian
composed of the Argonne v18 two-body potential and the Urbana IX three-body potential. The
masses and radii of neutron stars calculated with the obtained EOS at zero temperature are
consistent with recent observational data. For non-uniform nuclear matter, we construct the
EOS in the Thomas-Fermi approximation. In this approximation, we assume a functional form
of the density distributions of protons, neutrons, and alpha-particles, and minimize the free
energy density in a Wigner-Seitz cell with respect to the parameters included in the assumed
density distribution functions. The phase diagram of hot nuclear matter at a typical temperature
is reasonable as compared with that of the Shen EOS.

1. Introduction

The equation of state (EOS) for hot nuclear matter is one of the crucial ingredients in the
studies of core-collapse supernovae (SNe). The EOS for dense uniform matter plays important
roles in the core bounce and the subsequent formation of the proto-neutron star, whereas that
for non-uniform matter is indispensable for calculating various weak reactions. The EOS for
nuclear matter applicable to numerical simulations of core-collapse SNe must cover an extremely
wide range of baryon number densities ng, proton fractions Y}, and temperatures 7. Because
the construction of such EOS is laborious, the nuclear EOSs available for SN simulations are
limited. A typical SN-EOS is the Lattimer-Swesty EOS [1], in which a Skyrme-type effective
interaction is employed for uniform matter whereas a compressible liquid drop model is employed
for non-uniform matter. The Shen EOS [2, 3], which is another typical SN-EOS, is based on the
relativistic mean field theory for uniform matter and the Thomas-Fermi (TF) calculation for
non-uniform matter. Recently, some new nuclear EOSs applicable to SN simulations have been
proposed. However, all the SN-EOSs presently available are based on phenomenological models
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for uniform matter. It would be desirable to apply nuclear EOSs based on quantum many-body
theories using bare nuclear forces to SN simulations.

Under these circumstances, we are constructing a new nuclear EOS applicable to numerical
simulations of core-collapse SNe using the variational method with bare nuclear forces. We
have constructed the EOS for uniform asymmetric nuclear matter for arbitrary proton fractions
using the cluster variational method [4, 5, 6]. In the present study, we calculate the EOS for
non-uniform nuclear matter in the TF approximation, and will prepare a complete EOS table
available for SN numerical simulations. In this paper, we report the current status of our project.

2. Equation of state for uniform nuclear matter

In this section, we review the variational calculations for uniform nuclear matter reported in
Refs. [4, 5, 6]. As in the Fermi Hypernetted Chain (FHNC) variational calculations by Akmal
et al. [7], we start from the nuclear Hamiltonian composed of the Argonne v18 (AV18) two-body
potential and the Urbana IX (UIX) three-body potential.

At zero temperature, we express the energy per nucleon of uniform asymmetric nuclear matter
E/N as the sum of the two-body energy per nucleon Es/N and the three-body energy per nucleon
E5/N. The two-body energy per nucleon Fy/N is expressed as the expectation value of the two-
body Hamiltonian with the Jastrow wave function in the two-body cluster approximation. Then,
E5/N is minimized with respect to the spin-isospin-dependent central, tensor, and spin-orbit
correlation functions included in the Jastrow wave function. In this minimization, we impose the
extended Mayer’s condition and the healing distance condition to ensure that Fo /N of symmetric
nuclear matter and neutron matter reproduce the results obtained by Akmal et al. [7] using the
more sophisticated FHNC variational calculations. The three-body energy per nucleon E3/N is
expressed with use of the expectation value of the three-body Hamiltonian with the Fermi-gas
wave function. Four parameters included in F3/N are determined so that the total energy per
nucleon F/N reproduces the empirical saturation properties. Furthermore, they are fine-tuned
so that the TF calculations of isolated atomic nuclei with the obtained E /N reproduce the gross
features of experimental data [5]. As a result, we obtain the following values: the saturation
density ng = 0.16 fm—3, saturation energy Eq/N = —16.09 MeV, incompressibility K = 245
MeV, and symmetry energy Fgsy, = 30.0 MeV. These values are reasonable as compared with
those suggested in the experimental and observational studies [8, 9, 10].

The obtained E/N for neutron matter and symmetric nuclear matter are in good agreement
with the results of the FHNC calculations by Akmal et al. [7]. Furthermore, we have applied the
obtained E/N to neutron stars. The masses and radii of neutron stars with the present EOS
are consistent with recent observational data [11, 12, 13].

For uniform nuclear matter at finite temperatures, the free energies per nucleon F'/N are
calculated with an extension of the variational method by Schmidt and Pandharipande [14, 15].
In this method, F'/N is expressed with use of the averaged occupation probabilities of single
particle states for protons f,(k, my) and for neutrons fy(k, my,), respectively. Here, m; (i = p,n)
are the effective masses. Then, F//N is minimized with respect to mj and mj,.

The obtained F'/N for neutron matter and symmetric nuclear matter are in good agreement
with the results of the FHNC calculations by Mukherjee [16], which are extensions of the results
by Akmal et al. Other thermodynamic quantities derived from F/N, such as the internal
energies, entropies, and pressures are also reasonable.

Using this nuclear EOS for uniform matter, we have performed general-relativistic spherically-
symmetric numerical simulations of core-collapse SNe [17]. For the EOS of non-uniform matter,
the low-density part of the Shen EOS is adopted. In the simulation with neutrino transfers, the
stellar explosion is not successful because of the energy loss by neutrino emissions. This result
is consistent with other modern spherical SN simulations. Furthermore, the stellar core with
the variational EOS at the bounce is more compact than that with the Shen EOS. This implies
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that the variational EOS is softer than the Shen EOS. This relative softness of the variational
EOS is consistent with the fact that the incompressibility of the variational EOS is smaller than
that of the Shen EOS, K = 281 MeV.

The EOS for uniform nuclear matter obtained in this way with our variational method is
reasonable over a wide range of ng, Y}, and T'. At extremely low densities, however, F'//N tends
to be slightly lower than expected because of the formation of deuteron clusters. This deuteron
clustering is an interesting phenomenon because it is caused by many-body calculations with
realistic nuclear forces. However, this clustering is inappropriate for a systematic description
of the non-uniform phase of SN matter. In fact, we will treat non-uniform matter by the TF
method, in which F//N for uniform matter is necessary. Therefore, in this study, we slightly
modify the healing distance condition employed in the calculation of F3/N to remove the
deuteron clustering. Details of this treatment will be reported elsewhere [18].

3. Equation of state for non-uniform nuclear matter

In this section, we construct an EOS for non-uniform nuclear matter that is consistent with
the EOS for uniform nuclear matter reported above. For this purpose, we adopt the TF
approximation as is conducted by Shen et al. [2, 3|, or originally by Oyamatsu in a study
of neutron star crusts [19]. In this approximation, non-uniform matter is regarded as a mixture
of free neutrons, free protons, alpha-particles, and a single heavy nucleus that is located at
the center of a Wigner-Seitz (WS) cell in a body-centered cubic (BCC) lattice. The nucleus
is assumed to be spherical, and the number densities of nucleons n;(r) (i = n for neutron and
i = p for proton) in the WS cell are parameterized as follows:

) = { E_Zzzl — o)1 — (r/R;)t)3 + nout EORZ,SSTTSSR]%;H)_ (1)
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Here, Rcq is the radius of the WS cell. The number density of alpha-particles n,(r) is given by

[ - /RSt (0<r < Ry)
na(r) { nout (Rp <r< Rcen). (2)

Using the above density distribution functions, the free energy of a WS cell is expressed as
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The first term on the right-hand side of Eq. (3) is the bulk term, where f(ny(r), na(r), na(r))
is the local free energy density expressed as the sum of the contribution from nucleons and that
from alpha-particles. The former contribution is obtained in the previous section, whereas, in
the calculations of the latter, the alpha-particle is treated as a classical particle with a fixed
volume. The second term on the right-hand side of Eq. (3) is the gradient term. Fp is chosen to
be 68.00 MeV fm~ so that the TF calculation for isolated atomic nuclei reproduces the gross
features of their empirical masses and radii [5]. The third term represents the Coulomb energy.
Here, the uniform density distribution of electrons is assumed and their number density is given
by ne = npYp. The last term on the right-hand side of Eq. (3) is the correction term for the BCC
lattice. Here a is the lattice constant defined as a® = Vg = 47TRZ)QH /3, Znon is the non-uniform
part of the charge number per cell, and cpe. = 0.006562 [19]. Then, the average free energy
density of the WS cell F/V,q is minimized with respect to the parameters a, ni", n°%, Ry, ty,

N t t . .
ny', o'ty Rp, tp, and ng™ with np, Y}, and T' being fixed.
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Figure 1. Free energies per nucleon F//N at T' = 1 MeV for various proton fractions Y}, as
functions of the nucleon number density ng. F'/N for uniform matter are also shown.
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Figure 2. Phase diagram of hot nuclear matter at 7' = 1 MeV. The shaded region represents
the non-uniform phase where the mass fraction of heavy nuclei is given as X4. The dashed line
is the boundary where the mass fraction of alpha-particles X, = 1074,

The obtained F/N is shown in Figure 1, together with the results for uniform matter. It
is seen that F//N of non-uniform matter becomes lower than F'/N for uniform matter in the
region 107 "fm ™3 < np < 10~ 4m™3, and the critical density at which the non-uniform phase
disappears is about 10~ fm~3 regardless of Y.

Figure 2 shows the obtained phase diagram of hot nuclear matter at 7' = 1 MeV. The
shaded region represents the non-uniform phase and the dashed line shows the boundary where
the mass fraction of alpha-particles X, = 107%. It is seen that, at ng < 1072 fm~3, X, is
negligibly small. As np increases, alpha-particles and heavy nuclei appear in nuclear matter.
The non-uniform phase appears at a density of 1076 — 1075fm ™3, which is higher than the

value of ng ~ 1077 fm™3 found in Fig. 1. This discrepancy is due to the mixing of alpha-



3rd International Workshop on ““State of the Art in Nuclear Cluster Physics” IOP Publishing
Journal of Physics: Conference Series 569 (2014) 012058 doi:10.1088/1742-6596/569/1/012058

particles in the uniform phase. In Fig. 1, when we consider the alpha-mixing in uniform matter,
the corresponding F'//N becomes lower, and the density range for non-uniform matter becomes
smaller. The critical density between uniform and non-uniform phases is about 107! fm™3,
which is largely independent of Y}, as indicated above. It is also confirmed that the present
phase diagram based on the variational EOS is close to that based on the Shen EOS [3]. Here
we note that the mass numbers and the proton numbers of heavy nuclei appearing in the non-
uniform phase are larger than those in the Shen EOS, though the corresponding data are not
explicitly shown in this paper. This difference may be related to the fact that the symmetry
energy of the present EOS is smaller than that of the Shen EOS.

4. Summary and concluding remarks

In this paper, we reported the current status of our project to construct a new SN-EOS based
on realistic nuclear forces. We first constructed the EOS for uniform asymmetric nuclear matter
based on the AV18 and UIX potentials using the cluster variational method. Furthermore,
the present variational EOS was found to be softer than the Shen EOS in core-collapse SN
simulations. Using the free energies for uniform matter, we constructed the EOS for non-uniform
matter in the TF approximation. The obtained phase diagram at "= 1 MeV is reasonable as
compared with that of the Shen EOS. A more systematic study of the EOS for non-uniform
matter over a wide range of ng, Y, and 7', including the chemical composition in nuclear
matter, is now in progress, and will be reported elsewhere in the near future [18].
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