
Equilibrium axial current due to a static localized

spin in Weyl semimetals

Katsuhisa Taguchi
Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan

E-mail: taguchi@rover.nuap.nagoya-u.ac.jp

Abstract. We theoretically study the equilibrium axial current jeq
5 , which is the difference

between the charge current of left-handed and right-handed helicity of the Weyl fermions, in
the junction of a magnetic insulator attached to Weyl semimetals with time-reversal breaking
and inversion symmetry. The charge current of each helicity jeq

γ=± is induced by the localized
spin S of the magnetic insulator. jeq

γ=± is proportional to ∇×S and is independent of the sign
of γ. As a result, the difference between jeq

γ=+ and jeq
γ=− are canceled out, and jeq

5 is zero.

1. Introduction
The axial current is defined by the difference between the charge current of right- and left-
handed helicity in Dirac electron systems [1, 2, 3, 4, 5, 6, 7]. Although this concept was initially
devised in elementary particle physics, currently, it strongly affects condensed matter physics as
well because candidate materials of massless Dirac material, such as Weyl semimetal (WS) has
been reported [8, 9, 10, 11, 12, 13, 14, 15]. It is noted that the axial current can flow without
an accompanying charge current [1, 2, 3, 4, 5, 6, 7]. The property of the axial current is similar
to pure spin current in spintronics[16]. Therefore, one can expect that the axial current can be
applied to a method of low-consumption electronics.

The axial current is induced when we apply a static magnetic field H[1, 2, 3, 4, 5, 6, 7]. This
phenomenon is called as the chiral separation effect. Its origin lies in the difference of helicity
between right-handed and left-handed fermions in the WS. The helicity γ = σ̂ · p̂ indicates the
relative angle between the direction of the spin σ̂ and that of the momentum p̂ of Weyl fermions.
The helicity of right-handed fermions is γ = +1, whereas that of left-handed ones is γ = −1, but
both spins are parallel to each other along the applied magnetic field (Figure. 1(a)). Here the
axial current can be regard as the equilibrium flow. Recently, the nonequilibrium axial current
has been also studied in the WS / a magnetic insulator (MI) junction. The nonequilibrium
axial current is driven by the spin transfer from the spin angular momentum of the the localized
spin into the conduction electrons spin in the WS[16]. The preexisting work considered only the
nonequilibrium axial current due to the spin transfer. The equilibrium axial current due to the
spin transfer has not been discussed, so far.

In this paper, we study the equilibrium axial current jeq
5 due to the spin transfer in the WS

/ MI junction, where WS is time reversal breaking and inversion symmetry within a diffusive
regime. Using the Green’s functions techniques, we calculate the charge current of each helicity,
jeq
γ=± and obtain the axial current jeq

5 ≡ jeq
+ − jeq

− in the linear response of the localized spinS
in the MI.
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Figure 1. (a) Schematic illustration of the chiral separation effect. When a magnetic field
H is applied, right-handed and left-handed fermions are separated along the H direction. (b)
MI/WS junction with the chiral separation effect resulting from the static localized spin S. (c)
Schematic illustration of the energy dispersion of the WS with time-reversal symmetry breaking
and inversion symmetry.

2. Charge current of each helicity due to the localized spin
We will consider how the localized spin contributes to jeq

5 in the WS / MI junction (represented
in the Figure. 1 (b)). The total Hamiltonian we consider is given by

H = HW + Hex + Vi, (1)

where the first term,

HW =
∑
γ=±

HW,γ =
∑
γ=±

{∑
k

ψ†
k,γ [~vF,γ(k − γQ/2) · σ̂ − ϵF]ψk,γ

}
, (2)

is the Hamiltonian describing the doped WS. Here ψ†
k,γ = (ψ†

k,γ,↑ ψ†
k,γ,↓), and ψk,γ are the

creation and annihilation operators of the Weyl fermions of each helicity sector γ, respectively
(where indices ↑ and ↓ represent spin), ϵF is the Fermi energy [Figure. 1(c)], and vF,γ = γvF is
the Fermi velocity. We assume that a single pair of Dirac cones exists in the WS with inversion-
symmetry and time-reversal-symmetry breaking with nonzero Q. The parameter Q of Eq. (2)
denotes the position of the Weyl node with γQ/2 and its magnitude |Q| is the distance between
two Dirac cones. The second term in Eq. (1),

Hex =
∑
γ=±

Hex,γ = −
∑
γ=±

Jex

∫
dxS · (ψ†

γσ̂ψγ), (3)

describes the interaction between the localized spin in the MI and the spin in the WS, where
Jex > 0 is the exchange coupling constant, S = Sn(x) is the classical vector representing the spin
structure, S is its magnitude, and n is the unit vector representing the direction. Finally, the
last term in Eq. (1), Vi, represents nonmagnetic impurity scattering, which causes a relaxation
time τ of the transport of conduction electrons in the WS.

In the following calculation, Q is chosen to be parallel to the quantization axis of the localized
spin (z axis) as Q = Qzz and Qz is independent of time. In addition, we incorporate the
term proportional to Q in HW,γ into Hex,γ by using the following transformation: S → S′ =
(Sx, Sy, Sz − ~vF

2Jex
Qz). This transformation enables us to calculate the axial current rather easily.

Then, we assume that the effect of Hex,γ is weak and can be treated as a perturbation. This
condition is satisfied by Jex|S′|τ/~ ≪ 1 within the diffusive transport regime.

To consider the axial current, we will calculate the current jγ using the above assumptions.
We define the charge current of each helicity sector γ as jγ = −evF,γ〈ψ†

γσψγ〉 from the
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Figure 2. Feynman diagram of jγ . The bold line shows the Green’s function of HW,γ and the
wavy line represents the exchange interaction Hex,γ .

conservation law ρ̇γ = −∇ · jγ , where ργ ≡ −e〈ψ†
γψγ〉 is the charge density of helicity

γ. The current is represented by using the same space and time of lesser Green’s functions
Ĝ<

γ = 〈ψ†
γψγ〉/(−i~) as

ji,γ(x, t) = i~evF,γtr[σ̂iĜ
<
γ (x, t : 0, 0)]. (4)

ji,γ due to the linear response of the localized spin is described diagrammatically in Figure. 2.
We note that in this paper, we consider the equilibrium charge current jeq

i,γ ≡ jeq
i,γ(x, 0). Here

jeq
i,γ is derived from the spin-spin response function Πij,γ(q, Ω = 0) ≡ Πij,γ(q, 0) and is given by

jeq
i,γ(x, 0) =

−i~JexevF,γ

V

∑
q

e−iq·xΠij,γ(q, Ω = 0)S′j
q,Ω=0, (5)

Πij,γ(q, 0) =
1
V

∑
k,ω

tr[σ̂iĝk− q
2
,ω,γΛ̂j,γ ĝk+ q

2
,ω,γ ]<, (6)

where Λ̂j,γ is the vertex function of Vi and V is the system volume in the WS. The vertex function
Λ̂j,γ is represented from the 4 × 4 matrix Λ̂γ and the Pauli matrix σ as Λ̂j,γ = [Λ̂γ ]jν σ̂ν . Here
the matrix Λ̂γ is defined by Λ̂γ =

∑∞
n=0(Γ̂γ)n, where 4 × 4 matrix Γ̂γ satisfies Γ̂γ,ν = [Γ̂γ ]νµσ̂µ.

This Γ̂γ,ν is represented as

Γ̂µ,γ(q, 0) =
1
V

∑
k

niu
2
i ĝk− q

2
,ω,γ σ̂µĝk+ q

2
,ω,γ . (7)

In the Eqs. (6) and (7), ĝk,ω,γ is the Green’s function of HW,γ including Vi. The retarded
(advanced) Green’s function gr(ga) in HW,γ is given by

ĝr
k,ω,γ = [~ω + ϵF − ~vF,γk · σ̂ + iη]−1 , (8)

where η ≡ ~/(2τ) = niu
2
i νe/4 is the self-energy of Vi and is obtained in the Born approximation.

Here ni, ui, and νe are the concentration of impurities, the potential energy of impurities, and
the density of states at ϵF, respectively. We calculate Πij,γ by using ĝ<

k,ω,γ = fω(ĝa
k,ω,γ − ĝr

k,ω,γ)
[17], where fω is the Fermi distribution function. Then, the response function is represented by

Πij,γ(q, 0) =
∑
k,ω

fωtr[σ̂iĝ
a
k− q

2
,ω,γΛ̂aa

j,γ ĝa
k+ q

2
,ω,γ ] − h.c, (9)

where Λ̂nm
j,γ = [Λ̂nm

γ ]jν σ̂ν is constructed by the advanced Green’s function (n,m = a) or
the retarded Green’s function (n,m = r). Λ̂aa

j,γ = σ̂j + Γ̂aa
j,γ + · · · is described by Γ̂aa

j,γ =
1
V

∑
k niu

2
i ĝ

a
k− q

2
,ω,γ

σ̂µĝa
k+ q

2
,ω,γ

. Here Λ̂aa
j,γ can be approximately estimated by Λ̂aa

j,γ ≅ σ̂j + o(q).
Then, Πij,γ is obtained by expanding with q/kF ≪ 1 within ~/(ϵFτ) ≪ 1 as

Πij,γ(q, 0) =
νe

4ϵF
vF,γqζϵjζatr[σ̂iσ̂a] + o(q2). (10)
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Substituting Eq. (10) into Eq. (5), we finally obtain jeq
i,γ in the lowest order of q as

jeq
i,γ(x, 0) =

−i~νeJexev
2
F,γ

2ϵFV

∑
q

e−iq·xqζϵjζiS
′j
q,Ω=0 + o(q2) (11)

= −
~νeJexev

2
F

2ϵF
ϵiζj∇ζS

′j(x). (12)

In the above equation, we use v2
F,γ = v2

F. From Eq. (12), jeq
i,γ is induced by ∇ × S and is

independent of γ.

3. Discussion of axial current, charge current, and spin polarization density
Using Eq. (12), we discuss the axial current jeq

5 ≡ jeq
+ − jeq

− . Because jeq
i,γ in the Eq. (12) is

independent of γ, the difference between jeq
+ and jeq

− are canceled out each other. Therefore,
the axial current jeq

5 becomes

jeq
5 = 0. (13)

However, the total charge current, which is defined by jeq
i = jeq

i,+ + jeq
i,−, is given by

jeq(x, 0) = −
~νeJexev

2
F

ϵF
∇ × S′. (14)

From the above result, jeq is proportional to ∇ × S′ = ∇ × (S − ~vF
2Jex

Q). When Q is also

independent of the space in the WS, the charge current becomes jeq = −~νeJexev2
F

ϵF
∇ × S. Here

jeq can be regard as the magnetization current density as jeq ∝ ∇ × M , because the localized
spin S can be replaced with the magnetization M = −gµBS/a3, where g is the Landé factor,
µB is the Bohr magneton, a is the lattice constant.

We next discuss the spin density seq, which is defined by seq = seq
+ + seq

− , in the WS from
Eq. (12). Here seq

γ=± = 1
2〈ψ

†
γ σ̂ψγ〉 is the spin density in each helicity. Because the direction of

the spin and the momentum of right (left)-handed are parallel (antiparallel) to each other in the
WS, seq

γ is represented by seq
γ = jeq

γ /(−2evF,γ). From Eq. (12), seq
γ is given by

seq
γ (x, 0) =

~νeJexvFγ

2ϵF
∇ × S′. (15)

From the above equation, seq
γ is induced by ∇ × S′ and is proportional to the sign of γ = ± as

seq
+ = −seq

− . Therefore, total spin density seq vanishes as

seq = 0. (16)

From the above equation, there is no spin polarization due to the static localized spin in the
WS. Equations (13), (14), and (16) are the main results of this section.

Next, we will compare the property of jeq
5 and the nonequilibrium axial current jneq

5 . jeq
5 is

zero, but jneq
5 is induced by the dynamical localized spin [16]. The summary of the difference is

shown in Table I. In a similar way, there is the difference between jeq and the nonequilibrium
charge current jneq. jeq is generated by ∇ × S as jeq ∝ ∇ × S, but jneq is zero. The property
of seq and the nonequilibrium spin density sneq are difference. seq is zero and sneq is driven by
the dynamics of the localized spin ∂tS. Therefore, there is no spin polarization in the WS unless
the localized spin depends on time.
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Table 1. Summary of the axial current, the charge current, and the spin density due to the
localized spin.

Axial current Charge current Spin density

Static S jeq
5 = 0 jeq ∝ ∇ × S seq = 0

Dynamical S jneq
5 ∝ ∂tS jneq = 0 sneq ∝ ∂tS

Finally, we discuss the gauge invariance in the presence of the localized spin in the WS.
Owing to spin-momentum locking, S plays a role like the electromagnetic vector potential as
HW,γ + Hex,γ ∝ σ · (k − e

~Aγ), where the vector potential Aγ = JexS/(evF,γ) is conjugate to
jeq
γ . Therefore, the observable quantity should be proportional to the gauge invariant form as
−∂tAγ ≡ Eγ or ∇ × Aγ ≡ Bγ . From viewpoint of the effective electromagnetic field, jeq can
be driven by the effective magnetic field Bγ from Eq. (14).

4. Conclusion
We study the equilibrium axial current jeq

5 due to S in the WS / MI junction. Using the Green’s
function, we calculate jeq

i,γ in the linear response of S. From the results, jeq
i,γ is proportional to

∇ × S′ and vF,γ as you can see Eq. (12). Then, jeq
5 becomes zero because of the cancelation

between jeq
i,+ and jeq

i,−. In addition, the total spin density seq is also zero, but the total charge
current is induced by the localized spin from Eq. (14).

Acknowledgments
This work was supported by Grant-in-Aid for JSPS Fellows.

References
[1] Vilenkin A 1980 Phys. Rev. D 22, 3080.
[2] Metlitski A M and Zhitnitsky R A 2005 Phys. Rev. D 72, 045011.
[3] Newman M G and Son T D 2006 Phys. Rev. D 73, 045006.
[4] Kharzeev D and Zhitnitsky A 2007 Nucl. Phys. A 797, 67.
[5] Kharzeev E D, McLerran D L, and H. J. Warringa 2008 Nucl. Phys. A 803, 227.
[6] Gorbar V E, Miransky A V, Shovkovy A I, and Wang X 2013 Phys. Rev. D 88, 025025.
[7] Kharzeev D, Landsteiner K, Schmitt A, Yee H 2013 Lect. Notes Phys. 871, 241.
[8] Wan X, Turner M A, Vishwanath A, and Savrasov Y S 2011 Phys. Rev. B 83 205101.
[9] Balents L 2011 Physics 4, 36.
[10] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107, 127205.
[11] Halász B G and Balents L 2012 Phys. Rev. B 85, 035103.
[12] Xu G, Weng H, Wang Z, Dai X, and Fang Z 2011 Phys. Rev. Lett. 107, 186806.
[13] Liu C, Ye P, and Qi X 2013 Phys. Rev. B 87, 235306.
[14] Hosur P and Qi X 2013 C. R. Physique 14, 857.
[15] Tominaga J, Kolobov V A, Fons P, Nakano T, and Murakami S 2014 Adv. Mater. Interfaces 1, 1300027.
[16] Taguchi K and Tanaka Y, 2014 Axial Current driven by Magnetization Dynamics in Weyl Semimetals Preprint

1406.4636.
[17] Haug H and Jauho P A 2007 Quantum Kinetics in Transport and Optics of Semiconductors (Springer, New

York, 2nd ed.), pp. 45–46.

27th International Conference on Low Temperature Physics (LT27) IOP Publishing
Journal of Physics: Conference Series 568 (2014) 052032 doi:10.1088/1742-6596/568/5/052032

5


