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Abstract. Qubit–resonator coupled systems have been intensively studied because of their 
potential usefulness in quantum information processing. We investigated a superconducting 
flux qubit coupled to a resonator mode (SQUID plasma mode) associated with a dc SQUID 
used to read out the qubit state. Higher-order red and blue sideband transitions with |M| = 1, 2, 
and 3, where M represents the change in the quantum number of the resonator state, were 
clearly observed away from the symmetry point. We calculated the transition matrix elements 
between the dressed states and examined their dependence on both the coupling strength and 
the flux bias for the qubit. The observation of the sidebands up to |M| = 3 is consistent with the 
calculation results.  

1.  Introduction 
Circuit quantum electrodynamics (QED) systems [1], in which superconducting qubits are coupled to 
a resonator, are considered to be important hybrid quantum systems for applications in quantum 
information processing. Recently, we have shown experimental results of higher-order sideband 
transitions with |M| =1 and 2 and sideband Rabi oscillations on a flux qubit coupled to a SQUID-based 
resonator deep in the dispersive regime [2], where M represents the change in the quantum number of 
the resonator state. Higher-order sideband transitions in a superconducting qubit coupled to a resonator 
have also been reported with the use of a linear LC resonator [3] and a micromechanical resonator [4]. 
In quantum information processing, these sideband transitions may be useful for building quantum 
gates [5].  

In this paper, we present experimental results from a flux qubit coupled to a SQUID-based 
resonator with enhanced coupling strength compared with that of our previous study. We observed 
higher-order sideband transitions with |M| up to 3. To elucidate the origin of these transitions, we 
calculated the relevant transition matrix elements. The calculated results are consistent with our 
experimental results.  

2.  Experimental 
Figure 1 shows a schematic of the sample, which was fabricated using electron-beam lithography and 
angled aluminum deposition. The three-Josephson-junction flux qubit [6] is galvanically connected to 
the readout dc SQUID. The effective area of the Al shunt capacitor is ~2000 µm2. The qubit is 
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dominantly coupled to a single arm of the dc SQUID [7], in contrast to the conventionally studied flux 
qubits with symmetric geometry [8–10]. In our geometry, the qubit–SQUID coupling is considerably 
larger at zero bias current at the expense of higher susceptibility to bias-current noise. This large 
coupling enabled us to observe higher-order sideband transitions [2]. The measurement was performed 
at 20 mK. For spectroscopy and measurement of Rabi oscillations, the switching probability Psw of the 
SQUID was recorded using a short bias-current pulse applied to the SQUID immediately after a 
microwave pulse [8].  

 
 
 

  

Figure 1. (color online) Schematic 
diagram of the sample. The crosses 
represent small Josephson junctions 
(JJ). The blue loop with three JJ 
represents a three-JJ flux qubit, which 
is coupled to the single arm of the dc 
SQUID. The frequency of the SQUID 
plasma mode can be tuned via the bias 
current Ib and the magnetic flux in the 
SQUID loop. 

 Figure 2. (color online) The resonator frequency, 
that is, the frequency of the SQUID plasma mode, 
as a function of fSQ = ΦSQ/Φ0, where ΦSQ is the 
magnetic flux threading the SQUID loop. The 
parameters used for the calculated result shown by 
the line are as follows: minimum Josephson 
inductance of the dc SQUID LSQ = 280 pH, stray 
inductance Ls = 1560 pH, shunt capacitance C = 
31 pF, and normalized SQUID-loop inductance 
β = 2LIc /Φ0 = 0.12, where L and Ic are the 
SQUID-loop inductance and the critical current of 
each SQUID junction, respectively. 

 

3.  Results and discussion 
As shown later, sideband transitions were observed at frequencies separated by ~0.6 GHz. The 
resonator mode of ~0.6 GHz was indeed observed as a sharp resonant peak in Psw, which was apparent 
at temperatures as high as 0.5 K. The dependence of the resonant frequency on fSQ = ΦSQ/Φ0, where 
ΦSQ is the magnetic flux threading the SQUID loop and Φ0 = h/2e, is shown in figure 2. This 
resonance is attributed to the SQUID plasma mode [9,10] that is an LC resonance involving the 
Josephson inductance of the SQUID, the stray inductance, and the shunt capacitance C. The observed 
resonant frequency Ω is in good agreement with the calculated frequency of the SQUID plasma mode 
as shown in figure 2.  In the calculation, a loop inductance for the SQUID of reasonable magnitude 
was required to attain good agreement with the experimental data.  
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In the spectroscopic measurement of the qubit, we observed higher-order red- and blue-sideband 
transitions, as shown in figure 3, under strong microwave drive and away from the symmetry point. 
The peak frequency is given by νQ + MΩ, where νQ = 9.9 GHz is the qubit transition frequency. These 
sidebands are attributed to the transitions among energy levels of the dressed states of the qubit–
resonator coupled system. The resonator energy Ω ~ 0.6 GHz corresponding to 30 mK should be 
below the thermal energy; the effective temperature of the system is estimated to be ~200 mK on the 
basis of the width of the qubit step [11]. Therefore, a significant amount of photons is thermally 
excited, in contrast to the case of the previous study with Ω ~ 3 GHz [9]. These thermally excited 
photons seed the red-sideband generation process. In figure 3, the transitions with |M| = 1, 2, and 3 are 
clearly shown. This result is compared with that of our previous measurement on a similar sample [2], 
where only the transitions with |M| ≦ 2 were clearly observed. We ascribe this difference to the 
enhanced coupling strength between the qubit and the resonator. The critical current of the SQUID in 
the present sample is higher by a factor of approximately four compared with the previous sample, 
which should lead to enhanced coupling strength.  

 

 

Figure 3. (color online) Psw as a 
function of microwave 
frequency for various values of 
microwave power, measured at 
Ib = 0 and cos θ = 0.84. The 
duration of the microwave pulse 
was 100 ns. The traces are offset 
vertically for clarity. With 
increasing power, sideband 
transitions of higher orders 
appear beside the carrier 
transition.  
 

 
   We calculated the matrix elements that are relevant to the observed sideband transitions. The 

energy eigenvectors of the qubit–resonator system can be derived by diagonalizing the coupled 
Hamiltonian [2,12],  

† †
QR Q

1
( ) ( cos sin )( )

2 2z z x

h
H h a a hg a aν σ σ θ σ θ= + Ω + + − + , 

where g is the qubit–resonator coupling constant, 2
Qcos 1 ( / )θ ν= − ∆ , and ∆ is the qubit energy gap 

[6]. Deep in the dispersive regime, which is the case for the sample under investigation, the 
eigenvectors can be labeled as |g n> and |e n> using the labels of the dominant bare states; the bare 

states are the eigenstates of †
Q

1
( )

2 2z

h
h a aν σ + Ω + . Here, g and e denote the ground and excited states 

of the qubit, respectively, and n is the photon number. The transition matrix elements for the sideband 
transition from the initial state |g n> changing the photon number by M is given by  

T(n, M) = | <e n+M |(σz cos θ − σx sin θ)| g n> |. 
In order to compare these calculated results with the data shown in figure 3, T(n, M) was calculated 

by fixing the parameters as νQ = 9.9 GHz, Ω = 0.6 GHz, and cos θ = 0.84. Since the coupling constant 
g is unknown from the experimental data obtained thus far, g was varied from 0.05 to 0.2 GHz. We 
believe that these values are in the relevant range, in view of g = 0.1 GHz estimated for a separate 
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sample [2]. In a future experiment, g will be estimated for the present sample by using a spectroscopic 
measurement in which the bias current is varied. Because several photons are thermally excited,      
T(n, M) for n ranging from 0 to 5 is shown here. With increasing g, T(n, M) with higher M increases, 
as expected. For g higher than 0.15 GHz, T(n, M) with |M| = 3 has appreciable magnitude, which is 
consistent with our observation of transitions with |M| = 3. Interestingly, for the higher values of g and 
n, T(n, M) with nonzero M is larger than T(n, 0). The appearance of the higher-order sideband 
transitions reflects the fact that the eigenstate consists of several photon-number states. If we assume 
that the coupled Hamiltonian is of Jaynes-Cummings type [1], the eigenstate consists of two bare 
states and only transitions with M = 0, -1, and -2 are possible. Experimentally, we observed that the 
sideband transitions are gradually suppressed as the operating point approaches the symmetry point 
(θ = π/2). This behavior was also described in the calculation of T(n, M).  

 
 

Figure 4. (color online) Transition matrix elements for the transition in which the photon number 
is changed by M;  T(n, M) = | <e n+M |(σz cos θ − σx sin θ)| g n> | for g = 0.05, 0.1, 0.15, and 
0.2 GHz. The parameters used for the calculation are νQ = 9.9 GHz, Ω = 0.6 GHz, and cos θ = 
0.84. The values denoted with triangles are obtained using the eigenstates of HQR, while the 
values denoted with dots are obtained using those of HQR'.     

 
If we neglect the term  –hg σx sin θ (a+ + a) in HQR, the eigenstates of the resulting Hamiltonian  

                                † †
QR Q

1
' ( ) cos ( )

2 2z z

h
H h a a hg a aν σ σ θ= + Ω + + +  

can be analytically derived using a displacement operator for the harmonic oscillator states [13]. We 
found that the transition matrix elements between the eigenstates of HQR' nearly agree with those 
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between the eigenstates of HQR for the parameters used in the calculation, as indicated by the dots and 
triangles, respectively, in figure 4.      

To understand this agreement, we consider the eigenstates of HQR and HQR'. In general, the 
eigenstates of HQR  can be written as  
          |g n> = ,g n

k
k

G∑ |g k >(0) + ,g n
k

k

E∑ |e k >(0)  and  |e n> = ,e n
k

k

G∑ |g k >(0) + ,e n
k

k

E∑ |e k >(0),  

where |g k >(0) and |e k >(0) are the bare states of the system. Meanwhile, the eigenstates of HQR' can be 
written as   
                                     |g n>' = ,g n

k
k

G∑ ɶ |g k >(0)  and  |e n>' = ,e n
k

k

E∑ ɶ |e k >(0),  

because HQR' does not couple the qubit ground state |g > with the qubit excited state |e >. Deep in the 
dispersive regime, which is the case considered in this study, we observe that the ,g n

kE  terms in |g n> 

and the ,e n
kG  terms in |e n> are very small. This is because these terms are proportional to g sin θ/νQ, 

as derived from the first-order perturbation theory. Subsequently, we note that the matrix elements of 
HQR and HQR' in the subspace spanned by | g k >(0)  (or | e k >(0)) are the same:   
   (0)< g k | HQR | g k '>(0) = (0)< g k | HQR' | g k '>(0) and (0)< e k | HQR | e k '>(0) = (0)< e k | HQR' | e k '>(0). 
Given the aforementioned considerations, we conclude that the eigenstates of HQR are approximately 
equal to those of HQR'. Therefore, the transition matrix elements between the eigenstates of HQR' nearly 
agree with those between the eigenstates of HQR. The substitution of HQR' for HQR may be 
advantageous in some analyses because the eigenstates of HQR' can be analytically derived.  

The transition matrix element is closely related to the period of Rabi oscillations associated with 
the transition. We have shown that the coupling constant can be estimated from the ratio between the 
Rabi periods for the carrier transition and the sideband transitions [2]. For the sample under 
investigation, although we have observed Rabi oscillations for the sideband transition, quantitative 
analysis of the Rabi periods on the basis of the calculated T(n, M) has not been performed, partly 
because of the unknown coupling constant and the significant frequency dependence of the microwave 
attenuation, which strongly affects the ratio between the Rabi periods for different transitions. Further 
measurement and analysis will be performed in a future experiment. In the sample studied here with a 
relatively small value of Ω, the significant amount of thermal excitation of photons causes difficulty in 
analyzing the data and photon noise [10], leading to a short coherence time. However, this system may 
become a feasible platform for quantum operations involving many dressed states with easily 
accessible energies, including sideband cooling of the resonator.  

4.  Conclusion  
In conclusion, we observed higher-order red- and blue-sideband transitions with |M| = 1, 2, and 3 in a 
coupled system of a flux qubit and a SQUID-based resonator, the coupling strength of which is larger 
than that of a similar sample we studied previously. Higher-order red sidebands were observed in a 
simple scheme because the resonator was strongly excited by thermal energy. The significant qubit–
resonator coupling at Ib = 0 in these observations was due to the sample geometry; the qubit was 
coupled to a single arm of the dc SQUID. We calculated transition matrix elements between the 
dressed states obtained by diagonalizing the coupled Hamiltonian. The appearance of the sidebands up 
to |M| = 3 is consistent with the results of calculations in which reasonable coupling strength is 
assumed. The observed suppression of the sideband transition near the symmetry point is also 
consistent with the calculated transition matrix elements.  
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