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Abstract. We consider a quantum Hall system with an antidot acting as a energy dependent
scatterer. In the purely charge case, we find deviations from the Wiedemann-Franz law that take
place in the nonlinear regime of transport. We also discuss Peltier effects beyond linear response
and describe both effects using magnetic-field asymmetric transport coefficients. For the spin
case such as that arising along the helical edge states of a two-dimensional topological insulator,
we investigate the generation of spin currents as a result of applied voltage and temperature
differences in samples attached to ferromagnetic leads. We find that in the parallel configuration
the spin current can be tuned with the leads’ polarization even in the linear regime of transport.
In contrast, for antiparallel magnetizations the spin currents has a strict nonlinear dependence
on the the applied fields.

1. Introduction
Under the application of strong fields, electron transport becomes nonlinear and new effects
arise: rectification [1, 2, 3, 4, 5, 6, 7], magnetic-field asymmetries[8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24], and the generation of higher harmonics [25, 26, 27].
Quantum coherent conductors are excellent platforms to observe and study nonlinearities since
small voltage biases cause a sizeable effect over rather short lengths. In the ballistic regime of
transport, current response is determined by the transmission probability t(E). When t depends
weakly on the carrier’s energy E, current is always a linear function of V independently of the
background temperature T . Quite generally, however, transmission across nanostructures shows
sharp features arising from strongly energy dependent t(E). Furthermore, in the nonlinear
regime of transport, the transmission becomes a function of the applied voltage V because the
applied field modifies the potential landscape which in turn affects the scattering properties of the
sample [28, 29]. The self-consistent procedure must then include electron-electron interactions
that restore current conservation and gauge invariance beyond linear response. In fact, it is the
nontrivial dependence of the screening potential on voltage and magnetic fields that explains
both rectification effects and magnetic-asymmetries, respectively.

Electron motion can also be induced with the application of external thermal gradients. The
two main thermoelectric effects are the Seebeck and Peltier effects. The former leads to the
creation of a voltage drop in response to a temperature difference θ in the open circuit case.
The latter is based on the fact that electrons carry energy in addition to charge, and a heat
current then flows in the presence of an electric current. Both phenomena have been observed
in mesoscopic systems [30, 31, 32], and the agreement with the scattering approach [33] is
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remarkable. In these nanodevices, the thermodynamic efficiency can be tuned with an external
magnetic field [34, 36, 37, 38, 39, 40].

Beyond linear response, one must also take into account that the transmission is not only
a function of E and V but also depends on θ: t(E,V, θ) [41]. As a consequence, the injected
charge that builds up in the vicinity of the sample is determined from both particle and entropic
injectivities [41, 42, 43]. Upper bounds to the performance of heat engines and coolers are thus
to be carefully evaluated [44, 45]. Surprisingly, the thermovoltage can vanish for a finite value
of θ, as recently demonstrated in experiments with nanowire quantum dots [46]. Furthermore,
reciprocal relations are shown to break down for sufficiently high heating currents applied to
multiterminal setups [47]. Interestingly, departures from the Onsager-Kelvin relations differ
from auto or cross-terminal measurements [41, 48].

In this work, we discuss thermoelectric effects beyond linear response for quantum Hall bars
with an inserted antidot. This system allows for an investigation of the underlying symmetries
while providing, at the same time, a strong interaction and energy dependent scattering [49, 50].
We find large deviations of the Wiedemann-Franz law and interesting nonlinear behavior of the
Peltier effect. Additionally, we discuss the spin transport in quantum spin Hall systems [51]
coupled to ferromagnetic leads. Whereas the normal case already leads to the generation of
pure spin currents [52], we here find a competition with the polarized currents injected from the
magnetic contacts.

2. Theoretical formalism
When a mesoscopic conductor is coupled to multiple terminals α, β, . . . , each terminal can be
characterized by voltage bias eVα = μα −EF (μα is the electrochemical potential and EF is the
Fermi energy) and also by the temperature gradient θα = Tα − T (Tα and T are the reservoir
and the background temperature, respectively). In the presence of these two driving fields, the
electronic and heat transport is entirely described by the scattering matrix sαβ = sαβ(E, eU),
which is a function of the carrier energy E and the potential landscape U inside the conductor.
The potential U = U(�r, {Vγ}, {θγ}) is, in general, a function of the position �r and the set of
applied voltages {Vγ} and thermal gradients {θγ}. The charge and heat currents at lead α are
respectively given by [41, 43]

Iα =
2e

h

∑
β

∫
dEAαβ(E, eU)fβ(E), (1)

Jα =
2

h

∑
β

∫
dE(E − μα)Aαβ(E, eU)fβ(E), (2)

where Aαβ = Tr[δαβ−s†αβsαβ] and fβ(E) = (1+exp[(E−μβ)/kBTβ ])
−1 is the Fermi distribution

function in the reservoir β. In the weakly nonlinear regime of transport, one can expand these
currents around the equilibrium state, i.e., μα = EF and Tα = T , up to second order of Vα and
θα [41, 42, 43]:

Iα =
∑
β

(
GαβVβ + Lαβθβ

)
+

∑
βγ

(
GαβγVβVγ + Lαβγθβθγ + 2MαβγVβθγ

)
, (3)

Jα =
∑
β

(
RαβVβ +Kαβθβ

)
+

∑
βγ

(
RαβγVβVγ +Kαβγθβθγ + 2HαβγVβθγ

)
. (4)

The linear conductance coefficients are given by [33] Gαβ = (2e2/h)
∫
dEAαβ(E)(−∂Ef) ≈

(2e2/h)Aαβ(EF ), Lαβ = (2e/hT )
∫
dE(E−EF )Aαβ(E)(−∂Ef) ≈ (2eπ2k2BT/3h)∂EAαβ(E)|E=EF

,
Rαβ = (2e/h)

∫
dE(E − EF )Aαβ(E)(−∂Ef) ≈ (2eπ2k2BT

2/3h)∂EAαβ(E)|E=EF
, and Kαβ =
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(2/h)
∫
dE (E−EF )2

T Aαβ(E)(−∂Ef) ≈ (2π2k2BT/3h)Aαβ(EF ), where we have resorted to the Som-
merfeld expansion for the approximate expressions. We emphasize here that the linear coeffi-
cients Gαβ , Lαβ, Rαβ , and Kαβ are equilibrium quantities and hence are independent of the
screening potential U . In contrast, the nonlinear coefficients Gαβγ , Lαβγ , Mαβγ , Rαβγ , Kαβγ ,
and Hαβγ manifestly depend on U in response to the applied voltage and temperature biases.

Explicitly, they are written by [41, 42, 43] Gαβγ = (−e2/h)
∫
dE

(
∂Aαβ

∂Vγ
+

∂Aαγ

∂Vβ
+ eδβγ

∂Aαβ

∂E

)
∂Ef ,

Lαβγ = (e/h)
∫
dE EF−E

T

(
∂Aαβ

∂θγ
+

∂Aαγ

∂θβ
+δβγ

E−EF
T

∂Aαβ

∂E

)
∂Ef , Mαβγ = (e2/h)

∫
dE

(
EF−E
eT

∂Aαγ

∂Vβ
−

∂Aαβ

∂θγ
− δβγ

E−EF
T

∂Aαβ

∂E

)
∂Ef , Rαβγ = (e2/h)

∫
dE

{
δαγAαβ + δαβAαβ − (E − EF )

(
∂Aαβ

∂eVγ
+

∂Aαγ

∂eVβ

)
− δβγ

[
(E − EF )

∂Aαβ

∂E + Aαβ

]}
∂Ef , Kαβγ = (−1/h)

∫
dE (E−EF )2

T

{(
∂Aαβ

∂θγ
+

∂Aαγ

∂θβ

)
+

δβγ

[
(E−EF )

T
∂Aαβ

∂E +
Aαβ

T

]}
∂Ef , and Hαβγ = (−e/h)

∫
dE(E − EF )

{(
∂Aαγ

∂θβ
+ (E−EF )

T
∂Aαβ

∂eVγ
−

δαγ
Aαβ

T

)
+ δβγ

[
(E−EF )

T
∂Aαβ

∂E +
Aαβ

T

]}
∂Ef .

Leading order interaction effects can be incorporated into the nonequilibrium potential U via
characteristic potentials (CPs) uα = (∂U/∂Vα)eq and zα = (∂U/∂θα)eq:

U = Ueq +
∑
α

uαVα +
∑
α

zαθα. (5)

Note that CPs uα and zα relate the variation of U to voltage and temperature shifts,
respectively. We determine U self-consistently by considering the net charge of the system
q = qbare + qscr. The bare charge qbare = e

∑
α(D

p
αeVα + De

αθα) has two contributions due
to voltage bias and temperature shift, described by the particle injectivity [28, 29] νpα(E) =

(2πi)−1
∑

β Tr
[
s†βα

dsβα

dE

]
and the entropic injectivity [41] νeα(E) = (2πi)−1

∑
β Tr

[
E−EF

T s†βα
dsβα

dE

]
with Dp,e

α = − ∫
dEνp,eα (E)∂Ef . The screening charge qscr building up inside the sample can be

obtained from the response of the screening potential, ΔU = U−Ueq, away from the equilibrium
state Ueq. One can write qscr = e2ΠΔU where Π is the Lindhard function which becomes
Π =

∫
dED(E)∂Ef in the long wavelength approximation, withD(E) being the density of states.

Then, the set of equations for the CPs is closed via the Poisson’s equation ∇2ΔU = −4πq.
Finally, for a practical calculation, one can resort to the WKB approximation valid in the long

wavelength limit and make the replacement δ/δU → −e∂/∂E, i.e.,
∂Aαβ

∂Vγ
= ∂U

∂Vγ

δAαβ

δU ≈ −euγ
∂Aαβ

∂E

and
∂Aαβ

∂θγ
= ∂U

∂θγ

δAαβ

δU ≈ −ezγ
∂Aαβ

∂E . For a two-terminal setup which we consider below, the matrix

elements of Aαβ are given by A11 = A22 = −A12 = −A21 = t(E), where t(E) is the transmission
probability through the system.

2.1. Magnetic-field asymmetry
At equilibrium, the screening potential U = Ueq is symmetric with respect to the reversal of an
applied magnetic field, i.e., Ueq(B) = Ueq(−B), due to the fundamental microscopic reversibility
principle. In Ref. [33], magnetic-field symmetry of linear thermoelectric and heat transport
has been shown in the framework of scattering theory. When the system is driven into the
nonequilibrium regime, however, this magnetic-field symmetry can be broken since the CPs in
Eq. (5) are in general magnetic-field asymmetric, i.e., uα(B) �= uα(−B) and zα(B) �= zα(−B). In
Ref. [8], the nonlinear conductance Gαβγ in the isothermal case has been shown to be magnetic-
field asymmetric since uα, the voltage response of U , is not an even function of B. Here, we
generalize this result to all thermoelectric and heat transport coefficients.

We quantify the magnetic-field asymmetry in the nonlinear transport regime by defining the
symmetry(Σ) and the asymmetry(A) parameters [48] for G, L, R, and K coefficients in Eqs. (3)
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and (4):

ΣX
αβ,γδ ≡

Xαβ(B)Xγδ(−B)

X linear
αβ (B)X linear

γδ (−B)
, AX

αβ,γδ ≡
Xαβ(B)

Xγδ(−B)
, (6)

where Xαβ indicates the differential transport coefficients Gαβ, Lαβ, Rαβ, and Kαβ defined by

Gαβ ≡ ∂Iα
∂Vβ

∣∣∣∣
{θ}=0

= Gαβ + 2GαββVβ +
∑
ε �=β

(Gαβε +Gαεβ)Vε, (7)

Lαβ ≡ ∂Iα
∂θβ

∣∣∣∣
{V }=0

= Lαβ + 2Lαββθβ +
∑
ε �=β

(Lαβε + Lαεβ)θε, (8)

Rαβ ≡ ∂Jα

∂Vβ

∣∣∣∣
{θ}=0

= Rαβ + 2RαββVβ +
∑
ε �=β

(Rαβε +Rαεβ)Vε, (9)

Kαβ ≡ ∂Jα

∂θβ

∣∣∣∣
{V }=0

= Kαβ + 2Kαββθβ +
∑
ε �=β

(Kαβε +Kαεβ)θε, (10)

and X linear
αβ refers to the linear terms Gαβ , Lαβ , Rαβ, and Kαβ . We here consider either an

isothermal, i.e., {θ} = 0, or an isoelectric case, i.e., {V } = 0, hence the terms Mαβγ and Hαβγ in
Eqs. (3) and (4) are not considered. Notice that Xαβ contains both linear and nonlinear terms
and in the linear response regime it satisfies ΣX

αβ,βα = AX
αβ,βα = 1, due to the microscopic

reversibility X linear
αβ (B) = X linear

βα (−B). Hence, a deviation from 1 indicates the magnetic-
field asymmetry in the nonlinear regime. Moreover, these definitions have direct relevance to
experiments [47] and also are related to the efficiency of the thermoelectric power generation or
the refrigeration [34, 37, 38].

3. Quantum Hall bar wih an antidot
As a model system for the general formalism described above, we consider a conductor in the
quantum Hall regime in a two-terminal setup, see Fig. 1. We suppose that B is strong enough so
that only the lowest Landau level is occupied and consider the reversal of its direction B → −B.
A gate-controllable antidot [49, 50] can connect two counter-propagating edge states, which we
regard as a quantum impurity with a Breit-Wigner resonance at Ed + eUd(B) where Ud(B) is
the potential shift at the antidot in the presence of magnetic field B. The upper and lower edge
states are tunnel-coupled to the antidot level via coupling strengths Γ1 and Γ2, respectively.
If the direction of the magnetic field is reversed, the resonant level at the antidot is located
at Ed + eUd(−B). It should be noted that in general Ud(B) �= Ud(−B) beyond the linear
response regime [8]. The B-asymmetry can appear either via scattering asymmetry, Γ1 �= Γ2, or
electrical asymmetry if the Coulomb interaction between the upper edge and the antidot charges
is stronger (or weaker) than that between the lower edge and antidot.

In Fig. 1, we divide the conductor potential into five regions Ωi with i = 1, . . . , 5, with Ω5 ≡ Ωd

indicating the antidot region. We assume that the potential Ui in each region is constant and the
Coulomb interactions between different regions are described by a capacitance matrix Cij [28],
capturing the essential physics of our interest [8, 28, 29]. For definiteness, we also assume the
equal density of states for all regions, i.e., Di = D and the symmetric injectivities between two
terminals, i.e., Dp,e

iα = Dp,e and Πi = Π. Finally, we self-consistently determine the internal
potential and therefore the CPs by solving the Poisson’s equation explained previously.

We here consider the two cases: (i) the scattering asymmetry, i.e., Ci = C, Γ1 = (1 + η)Γ/2,
Γ2 = (1 − η)Γ/2, (ii) the electrical asymmetry, i.e., Γ1 = Γ2, C1 = C2 = (1 + ξ)C,
C3 = C4 = (1 − ξ)C. In the above two cases, the inherent asymmetry is described with a
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Figure 1. A two-terminal quantum Hall bar-antidot system, where voltages V1, V2 and
temperature gradients θ1, θ2 are applied. An antidot (Ω5) is coupled to the edge states with the
hybridization widths Γ1 and Γ2 and the Coulomb interactions are described by capacitances C1,
C2, C3, C4.

parameter η or ξ, respectively. We evaluate the CPs as

u1(B) = u2(−B) =

{
1
2 + ηcsc
1
2 + ξcel

, u1(−B) = u2(B) =

{
1
2 − ηcsc
1
2 − ξcel

, (11)

z1(B) = z2(−B) =
De

eDp
u1(B), z1(−B) = z2(B) =

De

eDp
u1(−B), (12)

with

csc =

(
2 +

4πCDpΓ

r(C − e2Π)

)−1

, cel =
−πe2ΠDpCΓt

(C − e2Π)[2πCDpΓ + r(C − e2Π)]
, (13)

where r = 1− t = Γ1Γ2/|Λ|2 is the Breit-Wigner reflection (t: transmission) through the antidot
at equilibrium, and Λ = EF −Ed − eU eq

d + iΓ/2.
In Eq. (11), one can easily prove the fundamental sum rule u1(B) + u2(B) = u1(−B) +

u2(−B) = 1 due to the gauge invariance. Importantly, the CPs are generally magnetic-field
asymmetric, i.e., uα(B) �= uα(−B) and zα(B) �= zα(−B). We also point out the properties
u1(±B) = u2(∓B) and z1(±B) = z2(∓B) in Eqs. (11) and (12), due to the chiral nature of the
quantum Hall system.

The symmetry(Σ) and the asymmetry(A) parameters defined in Eq. (6) can be evaluated
straightforwardly with the CPs in Eqs. (11) and (12). The general expressions of these
parameters for a two-terminal quantum conductor can be found in Ref. [48], to which we also
refer the readers for the detailed analysis of our quantum Hall system. We here briefly summarize
some of the interesting results.

Firstly, we find all the off-diagonal asymmetry parameters AX
αβ,βα as well as the symmetry

parameter ΣG
11,11 for electric conductance always exhibit B-symmetry even in the nonlinear

regime:
ΣG
11,11 = AG

12,21 = AL
12,21 = AR

12,21 = AK
12,21 = 1. (14)

This originates from the chiral property u1(±B) = u2(∓B) and z1(±B) = z2(∓B). In addition
to this, the gauge invariance condition

∑
α uα(±B) = 1 gives a contribution for the derivation

of ΣG
11,11 = 1 because u1(B) + u1(−B) = u1(B) + u2(B) = 1 where the latter equality comes

from the gauge invariance (see Ref. [48] for the details).
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Secondly, we find that the symmetry parameters for L(thermoelectric) and K(thermal)
coefficients depend on the lead indices:

ΣL
11,11 = 1 + cL1 (2θ/T ), ΣL

12,21 = 1 + cL2 (2θ/T ), (15a)

ΣK
11,11 = 1 + cK1 (2θ/T ), ΣK

12,21 = 1 + cK2 (2θ/T ). (15b)

This different tendency between diagonal and off-diagonal parameters have a relevance to recent
experiments [47]. Intriguingly, we note that this is a high-temperature effect since in the limit
kBT → 0 we find ΣL

11,11 = ΣL
12,21 = ΣK

11,11 = ΣK
12,21 = 1 + 2θ/T , irrespective of the system

parameters (see Ref. [48] for the details).
In this quantum Hall system, eight parameters ΣX

11,11 and AX
12,21 for all X = G, L, R, K,

are independent of the scattering asymmetry(η) and the electrical asymmetry(ξ) factors due to
the chiral nature, including five B-symmetric parameters in Eq. (14). However, the off-diagonal
elements ΣL

12,21 and ΣK
12,21 are dependent on η or ξ. Consequently, the distinction between the

diagonal and the off-diagonal elements disappears for η = ξ = 0. Thus, an asymmetry inherent
in the system is crucial to observe this distinction, which is consistent with an asymmetric
scattering in a recent experiment [47].

Even with a nonzero η or ξ, our results show that we can tune the antidot level to make
cL1 = cL2 = 1 in Eq. (15a) and recover the universality of the thermoelectric coefficients, i.e.,
ΣL
11,11 = ΣL

12,21 = 1 + 2θ/T . But, this is not the case for the heat current counterparts ΣK
11,11

and ΣK
12,21.

In addition to the above parameters, one can also write ΣG
12,21 = 1 − cG(eV/Γ), AG

11,11 =

1+ cG(eV/Γ), AL
11,11 = 1+ cLA(2θ/T ), A

R
11,11 = 1+ cRA (eV/Γ), and AK

11,11 = 1+ cKA(2θ/T ), where
cG = cLA = cRA = cKA = 0 if η = ξ = 0. Hence B-asymmetry of these parameters is due only to

the underlying asymmetry in the system. We note here that ΣG
12,21 and AG

11,11 are described by

a single constant cG .
Finally, we write the electrothermal symmetry parameters ΣR

11,11 = 1 + cR1 (eV/Γ) and

ΣR
12,21 = 1 − cR2 (eV/Γ) in heat current measurements. Here, ΣR

12,21 is in general a function

of η or ξ, whereas ΣR
11,11 is not.

3.1. Nonlinear Peltier effect
When an electrical current (I) flows through a conductor in a isothermal configuration a heat
current (J) is generated. The linear Peltier coefficient is defined as the ratio between the heat
and electrical currents,

Π0 =
R11

G11
, (16)

In Ref. [43] the Π coefficient was generalized to the nonlinear regime. By keeping only the
leading order corrections in powers of the electrical current one has

δΠ = Π−Π0 =
I

G11

[
R111

R11
− G111

G11
+ · · ·

]
, (17)

The conversion factor for electric currents into heat flow in the nonlinear regime is given by
the relative strength of the nonlinear conductances, R111, and G111 to the linear ones (R11, and
G11). In terms of the symmetries of the nonlinear coefficients we can rewrite Eq. (17) as

δΠ = Π−Π0 =
I

2V G11

[
ΣR
11,11 +AR

11,11 −
(
ΣG
11,11 +AG

11,11

)
+ · · ·

]
, (18)

In Fig. 2 we plot δΠ normalized to a given value of the electric current I. We observe large
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Figure 2. Plots of δΠ versus antidot level ε0/Γ for several background temperatures kBT . We
used kBθ/Γ = eV/Γ = 0.1 and η = 0.1.

deviations of the Peltier effect arising around resonance (i.e., when ε0 ≈ EF ). Otherwise, the
nonlinear Peltier coefficient attains its linear value. Besides, we find that deviations occurring
for ε0 ≈ EF are almost independent of the background temperature. Only when ε0 lies off
resonance, the largest deviations take place for the highest temperature.

3.2. Wiedemann-Franz law
We now explore the degree of fulfilment of the Wiedemann-Franz law beyond linear response.
For a metallic system and at very low temperatures the ratio between the thermal and electric
conductances normalized to the background temperatue T equals a universal value,

Λ0 =
K11

TG11
, (19)

where Λ0 = π2

3 (kBe )2 is the Lorentz number. In the nonlinear regime, Ref. [43] suggests a
similar quantity as the ratio between the heat flow (normalized to the temperature shift) in the
isoelectrical configuration and the electrical current in the isothermal case (normalized to the
applied voltage),

Λ =
(J/θ)|V =0

T (I/V )|θ=0
, (20)

The normalized deviation of the Wiedemann-Franz law from the Lorentz number can be
expressed in terms of the nonlinear transport coefficients,

Λ− Λ0

Λ0
=

K111

K11
V − G111

G11
θ + · · · (21)

which, in turn, can be recast using the symmetry and asymmetry coefficients defined above,

Λ− Λ0

Λ0
=

(
ΣK
11,11 +AK

11,11

2
− 1

)
V

2θ
−

(
ΣG
11,11 +AG

11,11

2
− 1

)
θ

2V
+ · · · (22)
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Figure 3. Plots of (Λ−Λ0)/Λ0 versus antidot level ε0/Γ for several temperatures kBθ. We use
kBT/Γ = 0.1, eV/Γ = 0.05 and η = 0.5.

We find that departures become stronger for level resonances around the Fermi energy within
a energy scale given by Γ. This is so because the Γ determines the energy variation of the
transmission function. In addition, the deviations increase for higher θ since the heat transport
is more linear with increasing θ.

4. Thermoelectric transport in quantum spin Hall insulators
4.1. Spin-generalized screening potential
In the previous section, a quantum Hall antidot in a two-terminal setup has been investigated,
where we determine the CPs by solving the Poisson’s equation. Here, we consider a simple
extension to the quantum spin Hall (QSH) system, see Fig. 4. In order to deal with the spintronic
case with the same methodology, we generalize the scattering formalism in a spin-dependent
manner. The potential Uσ = U(�r, {Vγ}, {θγ}, σ) is now a function of the spin index σ =↑, ↓
as well. This σ-dependence is crucial in our QSH system due to the underlying helicity, i.e.,
the spin-momentum correlation. Indeed, the property U↑ �= U↓ through the antidot filter is the
operational principle for the spin-polarized currents even with normal metallic contacts.

We generalize Eqs. (1) and (2) into the spin-resolved form [52]

Iσα =
e

h

∑
β

∫
dEAσ

αβ(E, eU)fβ(E), (23)

J σ
α =

1

h

∑
β

∫
dE(E − μα)A

σ
αβ(E, eU)fβ(E), (24)

for which we divide 2Aαβ in Eqs. (1) and (2) into A↑
αβ = Aαβ(U↑) and A↓

αβ = Aαβ(U↓),
explicitly incorporating the spin-dependent screening effect. In a two-terminal setup, we have
Aσ

11 = Aσ
22 = −Aσ

12 = −Aσ
21 = tσ(E) where tσ(E) is the spin-resolved transmission probability.

We disregard the spin-flip scattering, hence the current conservation condition is satisfied for
each spin component as

∑
α I

σ
α = 0 and

∑
α(J σ

α + IσαVα) = 0. One can define the direction
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Figure 4. Schematics of quantum spin Hall bar antidot setup. Spin-generalized interactions
are described by spin-dependent capacitance Cis,dσ, with i = 1, 2 being the edge label, s = ±
the helicity, d standing for the dot, and σ =↑, ↓ the electronic spin. Spin-dependent couplings
between the helical edges and the single level antidot are denoted with Γis.

of spin-resolved currents Iσ ≡ Iσ1 = −Iσ2 and Jσ ≡ J σ
1 = −J σ

2 − Iσ(V1 − V2), and hence the
spin-polarized currents as well:

Is = I↑ − I↓ (25)

Js = J↑ − J↓ (26)

Total charge and heat fluxes are given by Ic ≡ I↑ + I↓ and Jc ≡ J↑ + J↓, respectively.
The screening potential U =

∑
σ Uσ in Eq. (5) can now be generalized as

U = Ueq +
∑
α,σ

uασVα +
∑
α,σ

zασθα, (27)

where uασ = (∂Uσ/∂Vα)eq and zασ = (∂Uσ/∂θα)eq are spin-dependent CPs which relate the
variation of spin-resolved potential Uσ to voltage and temperature shifts at each terminal.

As described earlier, the self-consistent determination of U can be accomplished via Poisson’s
equation ∇2ΔU = −4πq, with ΔU = U − Ueq =

∑
σ ΔUσ and

q =
∑
σ

qσ = e
∑
α,σ

[
Dp

α(σ)eVα +De
α(σ)θα

]
+ e2

∑
σ

ΠσΔUσ . (28)

In our model, σ-dependences of Dp,e
α (σ) and Πσ appear for unequal spin populations arising,

e.g., from ferromagnetic leads. In order to understand this, note that the first two terms in a
square bracket in Eq. (28) are the contributions from the lead injection of charges by means of
voltage and thermal driving, respectively. Only when the spin population is unequal (p �= 0,
p: polarization) via using ferromagnetic contacts, one expects Dp,e

α (↑) �= Dp,e
α (↓) and Π↑ �= Π↓,

where the latter comes directly from D↑ �= D↓. For normal metallic contacts, the only term
in Eq. (28) which can give rise to a spin imbalance inside the system is the screening potential
ΔUσ.

The solution procedure is quite analogous to the quantum Hall case (see Ref. [52] for details).
It should be noted that for QSH case the edge-antidot couplings Γ1s and Γ2s in general depend on
the helicity s = ± corresponding to spin channels ↑(+) and ↓(−), when coupled to spin-polarized
ferromagnetic contacts. This is also the case for the reflection and transmission probabilities
since rσ = 1 − tσ = Γ1sΓ2s/|Λs|2, where Λs = EF − Ed + iΓs/2 with Γs = Γ1s + Γ2s. But,
for normal contacts with p = 0, there is no spin imbalance at the edge states, which leads to
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t↑ = t↓ via antidot scattering. In this case, the linear conductances are spin-independent and
the spin-polarization appears only in the nonlinear transport regime. In contrast, for general
case with p �= 0, unequal spin density leads to t↑(p) �= t↓(p) giving rise to spin-polarized electric
and heat currents already in the linear regime (see Ref. [52] for details). However, even for p �= 0
case, if the two contacts are magnetized in an antiparallel configuration, one finds t↑(p) = t↓(p)
and hence the linear spin-polarization vanishes as in normal contacts, due to the helical nature
of the QSH system.

The effective Poisson’s equation reads

qis = e
∑
α

(Dp
is,αeVα +De

is,αθα) + e2ΠisΔUis =
∑
σ

Cis,dσ(ΔUis −ΔUdσ). (29)

Note here that the charge with spin σ =↑(↓) at the antidot is supplied from the edge with helicity
s = +(−) since in our model we neglect the spin-flip scattering, by which one can maximize spin-
polarization effects. The density of states for all regions are given by Dis = Ds = (1 + sp)D/2,
and the symmetric injectivities from the two terminals give Dp,e

is,α = Dp,e
s = (1 + sp)Dp,e/2 and

Πis = Πs = (1 + sp)Π/2.

4.2. Normal contacts
Here, we focus on the result for normal metallic contacts (p = 0) since this is the most attractive
case of an all-electrical setup, in which our main physics of interest resides. For p = 0, it
should be mentioned that the spin-channel density of states does not depend on the helicity, i.e.,
D+ = D− = D/2 with D = D+ +D−.

We consider the scattering asymmetric case, i.e., equal interaction strength Cis,dσ = Cis =
Cs = C/2 with C = C++C−, but asymmetric hybridizations Γ1s = (1+η)Γ/4, Γ2s = (1−η)Γ/4
with Γ = Γ+ + Γ− (Γs = Γ1s + Γ2s = Γ/2). The coupling asymmetry is thus quantified with
a nonzero η = (Γ1 − Γ2)/Γ where Γi =

∑
s Γis. In an experiment, this can be the general case

where the antidot is closer to one of the edge states. Also, this asymmetry can be generated by
tuning the width and the height of the tunnel barriers between the antidot level and the edge
channels. One can find ΔUdσ = u1σV1 + u2σV2 + z1σθ1 + z2σθ2, where the corresponding CPs
are given by

u1↑ = u2↓ =
1

2
+ ηcsc, u1↓ = u2↑ =

1

2
− ηcsc, (30)

z1↑ = z2↓ =
De

eDp
u1↑, z1↓ = z2↑ =

De

eDp
u1↓. (31)

Here, csc = [2 − 2C/e2Π]−1 = Cμ/2C with 1/Cμ = 1/C + 1/e2D. Importantly, we can expect
electronic transport to be spin polarized for asymmetric couplings due to the spin-dependent
screening. Intriguingly, our result is a purely interaction-driven effect and this effect disappears
in the noninteracting limit C → ∞.

Up to the second order expansion of V1 = V and θ1 = θ (V2 = θ2 = 0), we have the current
expressions

Is = −ηcsc

(
2e3

h
t′V 2 +

2eπ2k2BT

3h

De

Dp
t′′θ2 +

2e2

h

[
π2k2BT

3
t′′ +

De

Dp
t′
]
V θ

)
, (32)

Js = −ηcsc

(
2e2π2(kBT )

2

3h
t′′V 2 +

2π2k2BT

3h

De

Dp
t′θ2 +

2eπ2(kBT )
2

3h

[
1

T
t′ +

De

Dp
t′′
]
V θ

)
, (33)

Ic =
2e2

h
tV +

2eπ2k2BT

3h
t′θ +

eπ2k2B
3h

(
t′ − T

De

Dp
t′′
)
θ2 +

e2

h

(
π2k2BT

3
t′′ − De

Dp
t′
)
V θ, (34)
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Jc =
2eπ2(kBT )

2

3h
t′V +

2π2k2BT

3h
tθ

− e2

h

(
t+

π2(kBT )
2

6
t′′
)
V 2 +

π2k2B
3h

(
t− T

De

Dp
t′
)
θ2 +

eπ2k2BT

3h

(
t′ − T

De

Dp
t′′
)
V θ,

(35)

where t ≡ t(EF ), t
′ ≡ ∂Et(E)|E=EF

, and t′′ ≡ ∂2
Et(E)|E=EF

. These are central to our analytic
results. The spin-polarized electronic and heat currents can be generated if ηcsc �= 0. Note
also that spin-polarized currents appear in the nonlinear regime only. Isothermal (θ = 0) and
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Figure 5. (a) Vth versus kBθ/Γ and (b) θad versus eV/Γ, at Ed = 0.25Γ for several kBT . Used
parameters are η = csc = 0.5 and EF = 0.

isoelectric (V = 0) cases are treated in Ref. [52]. Here, we focus on the pure spin currents, i.e.,
Ic = 0, Jc = 0, by means of thermoelectric Seebeck and Peltier effects.

In open-circuit conditions, a thermovoltage Vth can be generated in response to a temperature
bias θ, making Ic = 0. Figure 5(a) shows the numerically evaluated set of biases {θ, V } which
satisfies Ic(Vth, θ) = 0, where the slope can be identified as the Seebeck coefficient. Note that
the thermovoltage acquires a nonlinear component with increasing θ [41, 46]. One finds the pure
spin current expression as a function of thermal gradient only

Is = ηcsc
2eπ2k2BT

3h

(
π2k2BT

3

[
t′t′′

t
− (t′)3

t2

]
+

De

Dp

[
(t′)2

t
− t′′

])
θ2, (36)

up to leading order in θ. Figure 6(a) shows the numerical plots of pure Is versus θ beyond
the quadratic regime (a comparison with the analytical results can be found in Ref. [52]). We
observe that the amplitude of Is shows a nonmonotonic behavior with T , providing another way
to maximize the effect.

In our setup, also the pure spin heat flows can be generated using electrical means only.
By adiabatically isolating the sample, thermal bias θad is generated in response to the applied
voltage V , making Jc(V, θad) = 0, see Fig. 5(b). We find the pure spin heat current expression

Js = ηcsc
2e2π2(kBT )

2

3h

([
(t′)2

t
− t′′

]
+ T

De

Dp

[
t′t′′

t
− (t′)3

t2

])
V 2. (37)

up to leading order in V . Corresponding plots are shown in Fig. 6(b) as a function of V .
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Figure 6. (a) Pure Is versus kBθ/Γ and (b) pure Js versus eV/Γ, at Ed/Γ = 0.2 for several
kBT . Here, η = csc = 0.5 and EF = 0.

4.3. Polarized contacts
For polarized contacts with p �= 0, an unequal spin injection from the reservoirs with a majority
spin density (1+p)D/2 and a minority one (1−p)D/2 would generate spin-polarized currents. In
this sense, the results are to some extent anticipated and hence less interesting than those of the
unpolarized case. For an equal and antiparallel magnetization, however, it is interesting to note
that linear conductances are spin-independent giving rise to vanishing linear spin-polarization.
This will be explained below.

Although the QSH bar itself preserves the time-reversal invariance, we can also investigate the
reciprocity relation by considering ferromagnetic contacts with a polarization p, where the role
of a magnetic-field reversal (B → −B) can be achieved by simultaneous reversal of polarization
p → −p and spin index σ → σ̄ (σ =↑, ↓) [53]. As we will explain below, in any case the

Onsager-Casimir relation is always satisfied for linear coefficients, i.e., X↑
αβ(p) = X↓

βα(−p) for
X = G,L,R,K, which holds even for p = 0. Beyond the above argument, we here discuss
about the breakdown of this fundamental symmetry relation in nonlinear regime of transport for
parallel and antiparallel magnetization respectively, and view the normal contacts as a limiting
case of these two.

4.3.1. Parallel magnetization For an equal and parallel magnetization between two reservoirs
with a polarization p, the density of majority spin-component (say, ↑) is given by D�↑ = (1 +
p)D�/2 and the minority one by D�↓ = (1−p)D�/2 where � = L,R denotes the left or right leads.
Then, including the helicity s-dependence, we have Γ�s = (1+sp)Γ�/2 where � = 1, 2 corresponds
to the upper or lower counterpart for edge-antidot coupling [see Fig. 4]. This gives polarization-
and spin-dependent transmission as tσ(p,E) = 16(E − Ed)

2/[16(E − Ed)
2 + (1 + sp)2Γ2] with

Γ = Γ1 + Γ2. Hence, as expected, spin-polarized currents appear already in the linear regime
since t↑(p) − t↓(p) �= 0. Moreover, one can notice here that t↑(p) = t↓(−p) because the relation
sp = s̄(−p) is always satisfied in the expression of transmission, with s = +(−) corresponding

to σ =↑ (↓). Thus, we have G↑
αβ(p) = G↓

βα(−p), L↑
αβ(p) = L↓

βα(−p), R↑
αβ(p) = R↓

βα(−p), and

K↑
αβ(p) = K↓

βα(−p) for α, β = 1, 2 (we refer the reader to Ref. [52] for explicit expressions
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of all coefficients). This is a manifestation of the fundamental symmetry relations near
equilibrium [33].

We calculate the screening potential ΔUσ(p) = uσ1 (p)V1+uσ2 (p)V2+ zσ1 (p)θ1+ zσ2 (p)θ2, where
the corresponding CPs in the presence of (i) scattering and (ii) electrical asymmetries are given
by

uσ1 (p) =

{
1
2 + ηcσsc(p)
1
2 + ξcσel(p) ,

uσ2 (p) =

{
1
2 − ηcσsc(p)
1
2 − ξcσel(p) ,

(38)

and zσ�=1,2(p) = (De/eDp)uσ�=1,2(p), with

cσsc(p) = s

[
2− 2C(1 + sp)

e2Π

]−1

, (39)

cσel(p) =

−(s)e4πΓCΠDp(1 + sp)

(
(1+sp)2(1−r2σ)

[2C−e2Π(1+sp)(1+rσ)]2
− (1+s̄p)2(1−r2σ̄)

[2C−e2Π(1+s̄p)(1+rσ̄)]2

)
4πΓC(1 + sp) + 8e2rσ

. (40)

Here, tσ(p) = 1−rσ(p) = 16(EF −Ed)
2/[16(EF −Ed)

2+(1+sp)2Γ2] and s = ± refers to σ =↑, ↓.
We note that c↑sc(p) = −c↓sc(−p) and c↑el(p) = −c↓el(−p), and hence u↑1(p) = u↓2(−p).

Furthermore, one can show that u↑�=1,2(p) − u↓�=1,2(−p) ∝ η, ξ and u↑�=1,2(p) − u↓�=1,2(p) =

±η[c↑sc(p)− c↓sc(p)] or ±ξ[c↑el(p)− c↓el(p)]. Importantly, the former characterizes the breakdown of

Onsager-Casimir symmetry in nonlinear regime [48, 8], e.g., G↑
111(p)−G↓

111(−p) ∝ η, ξ, while the

latter does the nonlinear contribution of the spin-polarized currents, e.g., G↑
111(p) − G↓

111(p) =
g(η, ξ; p), with g(η, ξ; p) being a function of η or ξ and p. For p = 0, these two relations merge

into a single one u↑1 − u↓1 = 2ηcsc, 2ξcel, leading to G↑
111 − G↓

111 ∝ η, ξ. Previously, this has
been shown to generate spin-polarized currents in the nonlinear transport regime with normal
metallic contacts.
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Figure 7. Plots of Is/Ic versus (a) eV/Γ at kBT/Γ = 0.01 and (b) kBθ/Γ at kBT/Γ = 0.5, for
several (parallel) polarization p, with η = csc = 0.5, Ed/Γ = 0.25, and EF = 0. With p �= 0,
spin-polarization occurs even at zero biases, i.e., V = 0 or θ = 0.
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Figure 8. Plots of Js/Jc versus (a) eV/Γ at kBT/Γ = 0.01 and (b) kBθ/Γ at kBT/Γ = 0.05,
for several (parallel) polarization p, with η = csc = 0.5, Ed/Γ = 0.3, and EF = 0. With p �= 0,
spin-polarization occurs even at zero biases, i.e., V = 0 or θ = 0.

4.3.2. Antiparallel magnetization For an equal but antiparallel magnetization between two
reservoirs, however, the upper edge is occupied by right-moving ↑- and left-moving ↓-electrons
both with an equal portion (1 + p)/2 of the total density of states in each lead, because in
this configuration the majority spin component is up (down) for the left (right) reservoir. In
contrast, the lower helical edge is filled only with a minority portion (1 − p)/2 for both left-
moving [+(↑)] and right-moving [−(↓)] channels. The net effect of this antiparallel configuration
gives spin-independent coupling and transmission, i.e., Γ1s = (1 + p)Γ1/2, Γ2s = (1 − p)Γ2/2,
and tσ(p,E) = [16(E−Ed)

2+p2Γ2]/[16(E−Ed)
2+Γ2]. We then have t↑(p) = t↓(p), hence linear

conductance coefficients make no contribution to spin-polarized currents, i.e., G↑
αβ(p) = G↓

αβ(p),

L↑
αβ(p) = L↓

αβ(p), R↑
αβ(p) = R↓

αβ(p), and K↑
αβ(p) = K↓

αβ(p). This vanishing linear order
contribution even with a nonzero p but with a specific antiparallel configuration is due to
the helical nature of the QSH system. Nevertheless, the symmetry relation still holds, i.e.,

t↑(p) = t↓(−p), hence G↑
αβ(p) = G↓

βα(−p), L↑
αβ(p) = L↓

βα(−p), R↑
αβ(p) = R↓

βα(−p), and

K↑
αβ(p) = K↓

βα(−p)

We analogously evaluate ΔUσ(p) = uσ1 (p)V1 + uσ2 (p)V2 + zσ1 (p)θ1 + zσ2 (p)θ2, where

uσ1 (p) =

{
1
2 + cσsc(η, p)
1
2 + cσel(ξ, p) ,

uσ2 (p) =

{
1
2 − cσsc(η, p)
1
2 − cσel(ξ, p) ,

(41)

and zσ�=1,2(p) = (De/eDp)uσ�=1,2(p), with

cσsc(η, p) = s(η + p)

[
2(1 + ηp)− 2C(1− p2)

e2Π

]−1

, (42)

cσel(ξ, p) = sp

[
2− 2C(1− p2)(1 + ξp)

e2Π

]−1

. (43)

Here, t(p) = 1 − r(p) = [16(EF − Ed)
2 + p2Γ2]/[16(EF − Ed)

2 + Γ2] and s = ± corresponds to
σ =↑, ↓.
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It is easy to show that c↑sc(η, p) = −c↓sc(η, p), c↑el(ξ, p) = −c↓el(ξ, p), c
↑
sc(η = 0, p) = c↓sc(η =

0,−p), c↑el(ξ = 0, p) = c↓el(ξ = 0,−p), cσsc(η = 0, p) ∝ sp, cσel(ξ, p) ∝ sp, cσsc(η, p = 0) ∝ ηs, and

uσ1 (p) = uσ̄2 (p). Thus, we have, e.g., u
↑
1(p)−u↓1(−p) = c↑sc(η, p)−c↓sc(η,−p) = c↑sc(η, p)+c↑sc(η,−p)

as well as u↑1(p)− u↓1(p) = c↑sc(η, p)− c↓sc(η, p) = 2c↑sc(η, p).
The relation such as u↑1(p) − u↓1(−p) = c↑sc(η, p) + c↑sc(η,−p) indicates the Onsager-Casimir

symmetry breaking in nonlinear regime, which vanishes for η = 0 but survives for p = 0,
η �= 0 with the latter corresponding to the normal metal leads. The nonlinear spin-polarization

term, e.g., u↑1(p) − u↓1(p) = 2c↑sc(η, p) remains finite provided that either of η or p is nonzero.
For p = 0, as in the parallel configuration, these two relations merge into a single one, e.g.,

u↑1 − u↓1 = 2ηcsc, 2ξcel. Only when η, ξ = p = 0, all spin-polarized currents vanish, which again
explains the spin-filter effect in an unpolarized case [Eqs. (32) and (33)], as a limiting case p → 0
of the antiparallel configuration.

From the symmetry arguments in this section, one can notice that the Onsager-Casimir
symmetry breakdown in nonlinear regime for p → 0 with a nonzero asymmetry factor η or ξ
suggests the underlying principle for the observed spin-polarization for QSH antidot system.

5. Conclusions
We have analysed the nonlinear transport of quantum Hall setups subjected to the voltage and
temperature biases. Our theory is based on the scattering transport formalism that incorporates
electron-electron interaction within a mean-field description. The potential landscape of the
nanostructure depends on the injected charges due to both, the voltage and temperature
gradients. Using this theory we find the symmetry relations of the nonlinear transport
coefficients for a quantum Hall bar with an inserted antidot. We find large deviations for the
Wiedemann-Franz law and Peltier coefficient from their linear values. We also have reported
results for the spin Hall bar including the antidot system in a spin-dependent capacitative
model. We have found pure spin current generation for which the spin energy and spin
current values depend on the magnitude of the lead polarization. Our results are relevant
in view of recent works that emphasize nonlinear properties of thermopower in nanostructures
[54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. In general, the nonlinear regime of transport has
not been explored to a large extend. Therefore, we expect the coming years to be full of exciting
discoveries and developments in this field.
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[6] González T, Vasallo B G, Pardo D and Mateos J 2004 Semicond. Sci. Technol. 19 S125
[7] Hackens B, Gence L, Gustin C, Wallart X, Bollaert S, Cappy A and Bayot V 2004 Appl. Phys. Lett. 85 4508
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