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Abstract. It is proposed to use quantum dots in order to increase the temperatures suitable
for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin
spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate
the intervals of plateaus robust against elevated temperatures. Numerical calculations employing
local trigonometric basis and highly efficient kernel polynomial method adopted for computing
the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect
by an order of magnitude, possibly above 77K. Requirements to potentials, quality and
arrangement of the quantum dots essential for practical realization of such enhancement are
indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs

quantum dot systems from two experimental groups is also given.

1. Introduction

The integer quantum Hall effect has been a subject for intense research in the two-dimensional
systems, quantum wells and heterojunctions, since the moment of its discovery in 1980 [1],
while the quantum dot systems were undeservedly overlooked, except for a few papers [2],[3].
It is traditional that the quantum Hall effect is a part of the low-temperature physics since it
demands both strong magnetic fields B and liquid helium temperatures T to become visible in
the conventional two-dimensional systems. So hard experimental conditions reflect fundamental
physics of the effect, which is interplay between localization due to random disorder potential
and dephasing processes due to electron-phonon interaction [4],[5]. Experiments show that the
plateau widths scale with a temperature like ∆B ∝ T κ with κ ≈ 0.4, and this non-trivial value of
the scaling index κ (substantially different from unity) proves that influence of electron-phonon
interaction does not reduce to temperature broadening of the distribution function. Strictly
speaking, all the electron states in a quantum Hall system are localized at T = 0 except for a
null set [4], and the electron-phonon interaction cannot be treated in the same simple manner as
for zero magnetic field. Therefore, a resulting ”degree of delocalization”, described quantitatively
by the plateau widths, is governed by characteristics of disorder potential (its amplitude and
correlation length), providing that the parameters of electron-phonon interaction are fixed. Of
course, it is desirable to have a deep and smooth disorder potential for better localization of
carriers, which guarantees higher temperatures for observation of the quantum Hall effect. Using
modulation doping, it is possible to make disorder potential really smooth (as compared to a
scale of the magnetic length) and observe the quantum Hall plateaus for high Landau levels (up
to n ∼ 10), however, amplitude of the potential produced by the remote dopants is not enough
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to overcome T ∼ 10K, even for n = 0. Evidently, the quantum dots produce a potential which
is both deep and smooth, and it is worth to apply them for the quantum Hall effect.

We develop a theory of the integer quantum Hall effect in the quantum dot systems at finite
temperatures, where electron-phonon interaction is taken into account by artificial broadening of
the spectral functions D(ε) in Eq. (6) for the quantum correlator of velocities wxy(ε1, ε2). This
approach allows us to reproduce low temperature behaviour of the transition width (∆ε ∝ T κ

with κ ≈ 0.4) and carry out numerical calculations of the Hall conductivity efficiently. The
latter is achieved by using a compact form of the one-particle hamiltonian (local trigonometric
basis [6]) and the kernel polynomial method [7]. We have studied temperature dependencies
of the magnetotransport curves between 4K and 80K as well as influence of the quantum dot
parameters (size and potential depth), their density and arrangement, and our calculations show
that the temperatures higher than 40K can be achieved for observation of the quantum Hall effect
with a quantum dot array with a density of 1.4 ·1010 cm−2 at magnetic field B = 10T. However,
it is vital to preserve the short-range component of disorder small enough, the condition hardly
satisfied in the available experimental papers [2],[3]. So, finally we give specific requirements
essential for practical observation of the integer quantum Hall effect at elevated temperatures.

2. Theory: the model, spectrum and Hall conductivity

Basically, we consider rather simple model of the two-dimensional electron gas at strong magnetic
field and an external potential, described in detail in Ref. [8]. To take into account both the
quantum dots and disorder, we present the potential in the form V (r) = VQD(r)+Vdis(r), where
potentials of the individual quantum dots are modelled by the gaussians,

VQD(r) = −
∑

i

Vi exp

(

−(r− ri)
2

2d2i

)

, (1)

which gives parabolic expansion near potental minima, a simple and practical approximation
used in many papers, including Refs. [9],[10] (here, we have projected the task on plane of a
structure by integrating out the third dimension). Physically, it is a very common case of the
quantum dots composed due to variation of the alloy composition, for example InGaAs quantum
dots [11]. Though some researches call those quantum dots InAs, it is very unlikely that the
effects of size quantization and strain alone are so strong and homogeneous to produce ∼ 1eV
blueshift of the optical spectra, almost equal to difference between the bandgaps of InAs and
GaAs, and reproduced in all the papers on this issue. Thus, we estimate quantum dot potential
amplitude as tens of meV instead of hundreds of meV, and their lateral dimensions as tens of nm.
Such magnitudes are comparable with the cyclotron energy and magnetic length at magnetic
field B = 10T, which are ~ωc = ~eB/m∗c ≈ 30meV, lB =

√

~c/eB ≈ 8 nm when considering
electrons with the effective mass m∗ = 0.04m0 (something between InAs and GaAs), meaning
that magnetoconfined states are formed [12], and spectrum of carriers can be described by the
Fock-Darwin solution [13]:

εn,m =
~ωc

2

[

2n + 1 + (n+m+ 1)(
√

1 + (2ω0/ωc)2 − 1)
]

, (2)

where ~ω0 =
√

V0~2/m∗d20 ≈ 20meV for V0 = 45meV, d0 = 14nm, m∗ = 0.04m0, and distance
between the successive magnetoconfined levels of a given Landau level n is about 10meV, thus
compared to the cyclotron energy of about 30meV. As a result, we get N = 3 magnetoconfined
levels from each quantum dot for each Landau level, these states are strongly localized and form
special intervals of the quantum Hall plateaus robust to elevated temperatures. It is easy to
estimate ratio of these states for a given density of the quantum dots (say, nQD = 1.4·1010 cm−2),

R = 2πl2BnQDN ≈ 20%. (3)
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Figure 1. Optimal window function
b(x− q) is shown for odd and even q.
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Figure 2. One of two peaks of the wave function
|ψk,q(x, y)|2 at q = 2, k = 16, N = 162,M = 2

√
N .

However, the estimation given by Eq. (3) does not imply that these special parts of plateaus
are absolutely robust against temperature, and to find the maximum temperature maintaining
the quantum Hall effect, we have carried out numerical calculations of the Hall conductivity
treating electron-phonon interaction in an approximate manner, by smearing delta-functions in
definition of the quantum correlator of velocities wxy, so that

σxy(ε) =
2e2~

S

ε
∫

ε1=−∞

∞
∫

ε2=ε

wxy(ε1, ε2)

(ε1 − ε2)2
dε1dε2, (4)

wxy(ε1, ε2) =
∑

α,β

Im{(vx)αβvy)βα}D(ε1 − εα)D(ε2 − εβ), (5)

D(ε) =
1

π

δ

δ2 + ε2
, (6)

where S = Lx×Ly is a sample area, α and β count eigenstates of the one-particle hamiltonian [8],
and δ is a temperature induced broadening, which describes the low temperature behaviour
∆ε ∝ T κ (κ ≈ 0.4) best when defined as δ(T ) = CT 2. Since to reveal the effects of a temperature
we need to model rather extended samples, more than 100lB ∼ 1µm long, it is important
to optimize computing by means of compact representation of the one-particle hamiltonian
as described in Sec. 3 and avoiding explicit hamiltonian diagonalization by use of the kernel
polynomial method [7], whose implementation to current problem will be published elsewhere.

3. Local trigonometric basis

In order to write the one-particle hamiltonian in a compact form, we start from its representation
in basis of the ”Landau stripes” [8], which we denote as Ψk(x, y) (let us fix the Landau level
number here, say n = 0, and set lB = 1). These elements are extended over x and localized
near y = Lyk/NL, where NL = S/2π is number of the electron states on each Landau level.
Alternatively, we can apply fourier transform with respect to the quantum number k, resulting
in the same set of functions but of the exchanged coordinates x↔ y. To construct the localized

basis instead, it is needed to appy the short-time Fourier transform,

ϕk,q(x, y) =
1√
M

NL
∑

l=1

w (l/M − q) exp(−2πilk/M)Ψl(x, y), (7)

where w(ξ) is a window function, vanishing outside the interval [−1
2
, 1
2
], and M is the integer

of the order of
√
N . Though it is expected that the functions ϕk,q(x, y) are localized near the
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Figure 3. Picture of the quantum Hall effect in the quantum dot systems with different degree
of arrangement presented for the temperatures (a) 40K and (b) 14K. Plot (c) demonstrates
influence of the quantum dot potential amplitude for the model d (”crystal” of quantum dots).
Filling factor ν = 2πl2Bne is proportional to electron concentration ne and inversely proportional
to magnetic field B (which was fixed during this set of calculations).

point (Lxk/M,LyqM/NL), the Balian-Low theorem [14] tells us that (∆x)2 = ∞ or (∆y)2 = ∞
due to restrictions imposed on the window function w(ξ) in order to keep orthogonality of the
transformation. However, this recipe can be happily improved [6], and the functions

ψk,q(x, y) =

√

2

M

NL
∑

l=1

b (l/M − q) cos[π(k − 1/2)(l/M − q + 1/2)]Ψl(x, y) (8)

form the local trigonometric basis. Speaking formally, the function given by Eq. (8) are not
localized at all, however, each of them consists of the two well localized functions, one situated
at (Lxk/2M,LyqM/NL), and another one at (Lx(1− k/2M), LyqM/NL), but this is enough to
form sparse representation of the one-particle hamiltonian. Surely, the window function b(ξ)
still obeys some relations protecting orthogonality of the transformation [6], and it is practical
to find specific shape of b(ξ) supporting best localization within these restrictions numerically.
Shape of the optimized window function and a hump of one of the functions (8) are shown
in Figs. 1, 2. As a result, the hamiltonian matrix has fixed number (∼ 100) of non-vanishing
elements in each row, providing for efficient modelling of the systems larger than 1µm2.

4. Numerical results and discussion

We have carried out numerical calculations of the Hall conductivity following the approach
described in previous sections, and our results are shown in Fig. 3 for three types of the quantum
dot arrangement in comparison with case of a quantum well, as illustrated between the plots
(b) and (c) of Fig. 3 (the potentials produced by quantum dot systems are shown there). Let us
indicate these models as quantum dot ”vacuum” (a), ”gas” (b), ”liquid” (c) and ”crystal” (d).
We used parameters typical for strong magnetic field measurements in InGaAs quantum dot
systems, as expained in Sec. 2: B = 10T (lB ≈ 8 nm), m∗ = 0.04m0 (~ωc ≈ 30meV), g∗ = 0 [15],
nQD = 1.4 ·1010 cm−2, d0 = 14nm, V0 = 45meV (except for the two curves in Fig. 3(c) given for
V0 of 15 and 30meV). Relative scattering of the quantum dot potential depths Vi and radiuses
di was taken as ±20%, and the short-range disorder potential producing 2Γ = 4meV broadening
of the Landau levels was included. Figs. 3(a, b) demonstrate developing picture of the integer
quantum Hall effect in the quantum dot systems at T = 40K (for the model ”d”), while only a
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hint of quantization is seen for the quantum well model ”a” at T = 14K (where all the quantum
dot models exhibit really wide plateaus). Thus, quantum dots are shown theoretically to increase
maximum temperature allowed for observation of the quantum Hall effect by almost an order of
magnitude, especially when they are properly arranged, a property expected from the Stranski-
Krastanov quantum dots. However, it is vital to protect quantum dots from the pernicious
short-range potential, its effective amplitude Γ must be much smaller than the quantum dot
potential depth V0 and cyclotron energy ~ωc. Once this condition is not entirely satisfied, like
for one of the curves in Fig. 3 corresponding to V = 15meV, we notice considerable narrowing
of the plateaus, and at 2Γ/V0 ∼ 0.5 they fully disappear.

Experimentally, the quantum Hall effect in quantum dot systems has been studied in just a
few papers [2],[3], and experimental results are not so optimistic as our theoretical predictions.
The phenomenon has been observed only at liquid helium temperatures (T . 4K in Ref. [2]
and T . 0.3K in Ref. [3]), only the fundamental plateau (corresponding to filling factor ν = 2)
was pronounced (as expected for the short-range disorder [8]), and quantization precision was
not high (about 1%). This should not be perceived as a surprise since quantum dots enhance
the quantum Hall effect only if they have enough power for this, in particular, their potential
amplitude is much larger than the effective amplitude of the short-range disorder potential. We
attribute unsatisfactory experimental results to insufficient quality of the investigated samples in
the sense that they contain enough short-range (as compared to lB) variations of composition and
insufficient electron concentration, which drives the fundamental quantum Hall plateau (ν = 2)
at the moderate magnetic fields, corresponding to (relatively) large values of magnetic length
(B = 3T, lB = 15nm in Ref. [2] and B = 1.5T, lB = 21nm in Ref. [3]). Taking into account
∼ 1 eV difference between InAs and GaAs band gaps, it is easy to estimate that short-range
compositional fluctuations of the order of 1% produce random potential amplitude and Landau
level width 2Γ of the order of 10meV, which is by no means smaller than the cyclotron energy
corresponding to magnetic fields mentioned above (~ωc ≈ 10meV in Ref. [2] and ~ωc ≈ 5meV
in Ref. [3]). However, since nanotechnology is developing quite fast, we expect observation of
the predicted effect of the quantum Hall enhancement by quantum dots in future quantum dot
structures with smoothed compositional fluctuations and enhanced electron concentration.
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