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Abstract. We study the frustrated Heisenberg model on the bilayer honeycomb lattice. The
ground-state energy and spin gap are calculated, using different bosonic representations at
mean field level and numerical calculations, to explore different sectors of the phase diagram. In
particular we make use of a bond operator formalism and series expansion calculations to study
the extent of dimer inter-layer phase. On the other hand we use the Schwinger boson method
and exact diagonalization on small systems to analyze the evolution of on-layer phases. In this
case we specifically observe a phase that presents a spin gap and short range Néel correlations
that survives even in the presence of non-zero next-nearest-neighbor interaction and inter-layer
coupling.

1. Introduction

The study of the possible disordered ground states on two-dimensional antiferromagnets has
received a great interest in the last years. In particular, the existence of quantum disordered
phases has been studied in the phase diagram of antiferromagnets in a single layer honeycomb
lattice [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. However, the study of the influence of possible interlayer
coupling on these phases is scarce [11, 12, 13, 14]. From the experimental side, a significative
progress on the study of the bismuth oxynitrate, Bi3Mn4O12(NO3), has been made by Smirnova
et al.[15]. In this material the Mn4+ ions form a honeycomb lattice and two layers of such
honeycomb lattices are separated by bismuth atoms, forming a bilayer structure. The study
of the magnetic susceptibility indicates two-dimensional magnetism and no long-range ordering
down to 0.4 K, suggesting a nonmagnetic ground state[15, 16]. In addition, density functional
studies indicate that dominant interactions are the interlayer interaction J⊥ and the nearest-
neighbor interaction J1 on each layer[17].

27th International Conference on Low Temperature Physics (LT27) IOP Publishing
Journal of Physics: Conference Series 568 (2014) 042019 doi:10.1088/1742-6596/568/4/042019

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



1, A 1, B

2, A 2, B

J⊥

J1
J2

Figure 1. (Color online) Schematic representation of the coupling interactions in
Bi3Mn4O12(NO3). Colored areas correspond to the unit cells. The sites in each unit cell are
labeled as (1, A), (2, A), (1, B) and (2, B).

The aim of this paper is to study the zero temperature ground state of the frustrated spin-
1/2 Heisenberg model on the bilayer honeycomb lattice. We study the S = 1/2 case where
the quantum fluctuations becomes more important in order to characterize the quantum phases
in the model. On the other hand, although the material Bi3Mn4O12(NO3) has S = 3/2, the
substitution of Mn4+ in Bi3Mn4O12(NO3) by V4+ may lead to the realization of the S = 1/2
Heisenberg model on the honeycomb lattice. We use two different mean field self-consistent
approaches based on bosonic representations of the spin operators to study this system, combined
with Lanczos and series expansion methods to support the mean field results.

2. Self consistent calculations on the bilayer Model

We study the following Heisenberg model on the bilayer honeycomb lattice

H =
∑

~r,~r′,α,β

Jα,β(~r,~r
′)~Sα(~r) · ~Sβ(~r

′) (1)

where, ~Sα(~r) is the spin operator on site α corresponding to the unit cell ~r. α takes the values
α = (1, A), (2, A), (1, B), (2, B) corresponding to the four sites on each unit cell as depicted in
Fig. 1, together with the couplings Jα,β(~r,~r

′). The coupling J⊥ does not introduce frustration
in the system and then, at the classical level and T = 0, it does not affect the classical Néel
phase, present for J2/J1 < 1/6. In the quantum case the situation is much subtle, increasing
J⊥ Néel order is likely to melt giving rise to a non-magnetic phase.

For large values of J⊥ we expect the ground state to be an interlayer valence bond crystal
(IVBC) with corresponding spins from both layers forming dimers (as ilustrated in Figure 1).
This limit represents an excellent starting point for the bond operators formalism and series
expansion calculations.

On the other hand, starting from the magnetically ordered phase, the Néel order can be
destroyed both by increasing the frustration on each layer or increasing the coupling between
layers. The destruction of Néel order in a frustrated single layer honeycomb lattice has been
studied by means of various approaches [3, 4, 8, 11, 14, 19, 20, 21, 22]. In the following we use
two different bosonic representations of the spin operators to study the influence of the interlayer
coupling in the ground state of the bilayer model.

2.1. Bond operators Mean field approach.
First, we use the well known bond-operator method to study the bilayer antiferromagnet
described by Hamiltonian (1). We start by introducing a bond-operator representation of spin
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operators

~Sα
η,A(~r) =

1

2

(

(−1)η+1

[

s
†
A(~r)aα(~r) + a†α(~r)sA(~r)

]

− iǫαβγa
†
β(~r)aγ(~r)

)

(2)

~Sα
η,B(~r) =

1

2

(

(−1)η+1

[

s
†
B(~r)bα(~r) + b†

α(~r)sB(~r)
]

− iǫαβγb
†
β(~r)bγ(~r)

)

, (3)

where η = 1, 2 is the layer index, ~Sα
η,A(~r) is the spin operator on the sublattice A of layer η

corresponding to the unit cell located at ~r (See figure 1). Operators s
†
A
(~r) and a

†
α(~r) create

singlet and triplets states (out of a vacuum |0〉) in the vertical bond placed in sub-lattice A and

are defined as: s
†
A|0〉 =

1√
2
(| ↑↓〉 − | ↓↑〉), a†x|0〉 = − 1√

2
(| ↑↑〉 − | ↓↓〉), a†y|0〉 =

i√
2
(| ↑↑〉 + | ↓↓〉),

a
†
z|0〉 =

1√
2
(| ↑↓〉+ | ↓↑〉), and similar expressions for sublattice B. These kind of representations

where proposed by Sachdev[24] in order to treat quantum phase transitions between Neél and
dimerized phases. Operators belonging to the same unit cell satisfy the bosonic commutation
relations whereas operators belonging to different unit cells commute. The restriction that
the physical states are either singlets or triplets leads to the constraints in each unit cell,

s
†
AsA +

∑

α a
†
αaα = 1 and s

†
BsB +

∑

α b
†
αbα = 1. Introducing the bond-operators representation

of the spin operators in (1) we obtain a bosonic version of the Hamiltonian. We transform
Fourier and retain terms up to second order to write H = H⊥ +H1 +Hλ, where

H⊥ = −
3

2
J⊥s

2N +
J⊥
4

∑

~k,α

{

a†α(~k)aα(~k) + b†
α(
~k)bα(~k)

}

, (4)

H1 =
J1
4

∑

~k,α

{

γ(~k)
(

aα(~k)bα(−~k) + aα(~k)b
†
α(
~k) + b†

α(
~k)aα(~k) + b†

α(
~k)a†α(−~k)

)

(5)

+ γ(~k)
(

bα(~k)aα(−~k) + a†α(~k)bα(~k) + a†α(~k)b
†
α(−

~k) + bα(~k)a
†
α(
~k)

)}

,

Hλ = (2s2 − 5)Nλ+ λ
∑

~k,α

{

a†α(~k)a
†
α(
~k) + b†

α(
~k)b†

α(
~k)

}

, (6)

where, we have assumed that condensation of singlets occurs, i.e. 〈sα(~r)〉 = s, γ(~k) =

s2(1 + ei
~k·~e1 + ei

~k·~e2), ~e1 and ~e2 are the primitive vectors on a triangular lattice and λ is a
Lagrange multiplier related to the constraint in the number of bosons. Diagonalization by using
a Bogoliubov transformation allows us to write the following expression for the ground state
energy

E

N
= (2s2 − 5)λ−

3

4
J⊥(2s

2 + 1) +
∑

α

∫

d2k

V

(

ω(A)
α (~k) + ω(B)

α (~k)
)

, (7)

where ω
(A)
α (~k) and ω

(B)
α (~k) are triplet energies. The parameters s2 and λ are determined by

solving self-consistently the saddle point conditions ∂E
∂λ

= 0 and ∂E
∂s2

= 0 which are used to
evaluate the energy and gap of the system and compare with numerical techniques.

In order to complement our study, we have performed series expansion (SE) calculations,
starting from the limit of isolated dimers connecting spins from both layers via J⊥. Notice that,
this kind of expansions remain valid in the same limit that the bond operator approach (i.e. in
the limit of strong inter-layer coupling.) To this end we have performed a continuous unitary
transformation on the original Hamiltonian, using the flow equation method. This technique
allows to obtain perturbatively an effective Hamiltonian that keeps the block diagonal structure
of decoupled dimers. We refer for details of the method to ref.[25].
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Figure 2. (Color online) Ground state energy per dimer as a function of J1 obtained by
the self consistent bond-operator approach (blue circles), Lanczos (ED) on a 24 sites system
(red squares) and O(5) Series Expansion (SE) (yellow rhombi). Inset: triplet gap (same set of
parameters as main panel) BO (blue circles) ED (red squares) and SE (yellow rhombi).

For the present model we have performed O(5) and O(4) SE in J1,2 for ground state energy
and for triplet dispersion, respectively. Explicit expressions are too long to be printed explicitly
but are available electronically upon request. In Fig.2 we show the ground state energy per site
as a function of J1 and J2 = 0, obtained by BO (blue circles), O(5) SE (yellow rhombi) and
ED (red squares) on a system of 24 sites. As it can be observed, all the techniques predict an
energy decreasing with the coupling of interlayer-dimer via J1. Furthermore, there is an excellent
quantitative agreement between the three methods for small values of J1. On the other hand,
triplet gap is shown in the inset of Fig.2 for the same set of parameters as the ground state
energy. Here we also observe that all the techniques predict a tendency to a closure of the gap,
when J1 is turned on. Our calculations shows that BO, ED and SE predict the same behavior.

2.2. Self consistent Schwinger Boson Mean-Field Theory

As we have seen previously, bond operator and series expansion methods are both suitable
to study the interlayer-dimer phase. In order to investigate the evolution of on-layer phases
as a function of inter-layer coupling we apply a representation of the spin operators in terms

of Schwinger bosons [27], ~Sα(~r) = 1
2
~b†
α(~r) · ~σ · ~bα(~r). Here ~bα(~r)

† = (b†
α,↑(~r),b

†
α,↓(~r)) is a

bosonic spinor corresponding to the site α in the unit cell at position ~r, ~σ are Pauli matrices,

and the constraint in the number of bosons
∑

σ b
†
α,σ(~r)bα,σ(~r) = 2S has to be satisfied on

each site. In order to perform a mean field decomposition, we define the following SU(2)

invariants, Aαβ(~x, ~y) = 1
2

∑

σ σbα,σ(~x)bβ,−σ(~y) and Bαβ(~x, ~y) = 1
2

∑

σ b
†
α,σ(~x)bβ,−σ(~y). This

decomposition allow us to treat ferromagnetism and antiferromagnetism on equal footing and
has been successfully used to describe a number of quantum frustrated antiferromagnets[1, 2,
3, 14, 28, 29, 30]. We perform a Hartree-Fock decoupling where the mean field parameters
are the expectation values of the SU(2) invariants A and B. The mean field equations for
these parameters Aαβ and Bαβ and the constraints in the number of bosons must be solved
self-consistently (see refs. [1], [3] and ,[14] for further details). To obtain the phase boundary
between the magnetically ordered and disordered phases using the self consistent Schwinger

27th International Conference on Low Temperature Physics (LT27) IOP Publishing
Journal of Physics: Conference Series 568 (2014) 042019 doi:10.1088/1742-6596/568/4/042019

4



æ
æ

æ
æ

æ
æ

æ
æ

æ

æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æææ
ææææ

0.0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

J⊥

J2
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Figure 3. (Color online) a) Phase diagram in the J2 − J⊥ plane obtained with SBMFT.
Gray region corresponds to the Néel phase whereas green region corresponds to magnetically
disordered phases. b) Phase diagram of the single layer case corresponding to Ref. [3]. Inset:
Z3 order parameter corresponding to the line J2 = 0.38

boson mean field theory we study the boson spectrum. In the gapless region the excitation
spectrum is zero at ~k = ~0, where the boson condensation occurs, this is characteristic of the
Néel ordered phase. On the other hand, in the gapped region, the absence of Bose condensation
indicates that the ground state is magnetically disordered.

In Fig. 3-a) we show the phase diagram in the J2 − J⊥ plane. For J⊥ ≫ J2 one can
expect a IVBC ground state adiabatically connected with the limit of decoupled dimers, i.e.
two singlets per unit cell, between spins 1, A(1, B) and 2, A(2, B) (see Fig. 1). In the region
0.2075 . J2 . 0.289 there is a reentrant effect. In this range, Néel phase separates from J2 axis,
leaving a tiny space for a magnetically disordered phase. In this way, Néel phase is here not
only limited by some value J∗

⊥(J2) from above, but also by a second value J∗∗
⊥ (J2) from below

(See Figure 3).
On the other hand, in the range 0.3732 . J2 . 0.398 (J⊥ = 0), there is evidence of the

existence of an on-layer valence bond phase [3] (see Figure 3-b). In this phase, SU(2) and
translational symmetries are preserved, but Z3 symmetry is broken. By turning on J⊥ the system
moves to the IVBC where the Z3 symmetry is recovered. In the inset of Figure 3-a, we depict
the Z3 directional symmetry-breaking order parameter ρ (defined in [18]) vs J⊥. The behavior of
this parameter suggest a Z3 symmetry restoring. Finally, in the region 0.289 . J2/J1 . 0.3732
the ground state preserves SU(2), lattice translational and Z3 symmetries and the spin-spin
correlations are short ranged[14]. This agrees with the evidence of a spin liquid phase in the
phase diagram corresponding to J⊥ = 0 [3, 8].
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3. Conclusions

In summary, we have studied the phase diagram corresponding to a frustrated Heisenberg model
on the bilayer honeycomb lattice, by means of bosonic mean field theories, complemented
with exact diagonalization and series expansion, and described the behavior of the quantum
phases as the interlayer coupling is increased. Using the Schwinger boson description we have
determined the region where the system is Néel ordered and the lines where the Néel order
is destroyed. We have determined an intermediate region where the phase diagram shows
signatures of a reentrant behavior and we observe that for values of the interlayer coupling
between (0.289 . J2/J1 . 0.3732) the Néel order is absent at J⊥ = 0 and the system presents a
nonzero spin gap, whereas in the region (0.3732 . J2/J1 . 0.398) each layer presents a nematic
disordered phase[3]. In all the range of J2 studied, the system presents signatures of an interlayer-
valence bond crystal (IVBC) phase for J⊥/J1 > 4. This phase evolves adiabatically from the
limit of decoupled interlayer-dimers. This is corroborated by bond operators self-consistent
calculations and series expansions starting explicitly from the limit of isolated interlayer dimers.
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