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Abstract. We investigate the behavior of polarized dipolar fermions in a two-dimensional
harmonic trap in the framework of the density functional theory (DFT) formalism using the
local density approximation. We treat only a few particles interacting moderately. Important
results were deduced concerning key characteristics of the system such as total energy and
particle density. Our results indicate that, at variance with Coulombic systems, the exchange-
correlation component was found to provide a large contribution to the total energy for a
large range of interaction strengths and particle numbers. In addition, the density profiles of
the dipoles are shown to display important features around the origin that is not possible to
capture by earlier, simpler treatments of such systems.

1. Introduction

Advances in trapping and cooling polar molecules with large permanent magnetic moments
and atoms with electric moments have enabled numerous studies of dipolar quantum gases
[1, 2, 3, 4, 5]. An important characteristic of these systems is that the dipole-dipole interaction
is long ranged and anisotropic. Similar to the tunability of short-ranged interactions through
Feshbach resonances, new techniques have been proposed [6] for controlling the strength and the
sign of dipolar interactions. The interaction in three-dimensions is repulsive for dipoles aligned
side-by-side and is attractive for dipoles aligned head-to-toe. Because the latter property along
with collisional losses may cause instabilities in the system it is suggested that a gas trapped in
two-dimensional (2D) geometry will provide a stable system.

Ground-state properties of 2D dipolar fermions have been investigated in a number of works
[7,8,9,10, 11,12, 13, 14, 15, 16, 17, 18, 19]. In particular, the ground-state energy, pressure, and
compressibility of a uniform gas of 2D fermions have been calculated by Lu and Shlyapnikov [17]
up to second order in interaction strength. Recently, Matveeva and Giorgini [18] have performed
quantum Monte Carlo (QMC) simulations to obtain the phase diagram of this system over a
wide range of coupling constants. Abedinpour et al. [19] developed hypernetted-chain (HNC)
approximation to calculate the pair distribution function and static structure factor which agrees
very well with the QMC results.
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In this work we present a theoretical study of ground-state energy and density profile of a
system of 2D polarized dipolar fermions in a harmonic trap potential. Utilizing the parametrized
ground-state energy [19] we develop a density-functional formulation within the local-density
approximation (LDA). We solve the Kohn-Sham equations iteratively using a simple charge-
mixing method using a basis of two-dimensional Hermite functions up to 10 closed shells (i.e. a
total of 66 basis functions). In Section 2, we introduce the model and the resulting Kohn-Sham
equations followed by a presentation of our results in Section 3. We summarize our conclusions
in Section 4.

2. Method
The interaction potential between two dipoles confined to 2D is given by
Cad
Eqq = gl (1)

where 7 is the distance between the dipoles which are assumed to align perpendicular to
the plane. In the case of an electric dipole with dipole moment d, the interaction strength
is given by Cyq = d?/(4meg), whereas for a magnetic dipole of magnetic moment p, it is
Cgq = pop?/(4w). The many-particle Hamiltonian describing a system of N dipoles in a
harmonic trap characterized by an angular frequency w is
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where 7; = (x;,y;) is the position vector of the ith dipole. The Hamiltonian in Eq. (2) is written
in harmonic units (h.u.) where lengths are measured in terms of the harmonic length ¢ = \/h/mw
and energies in terms of hw. In this notation, the coupling constant g4q is defined as
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In the LDA treatment of DF'T, the total energy is written as a functional of the particle density,
n(r) as

3)
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where the first, second and third terms represent the single-particle kinetic energy, the energy
associated with the harmonic trap and the classical Hartree energy respectively. The key element
of the treatment that determines the accuracy of the energy is the exchange-correlation energy
represented by the last term. Here exc(n(r)) is the exchange-correlation energy (per particle)
of a uniform dipole gas with density n = n(7). Defining the density in terms of auxiliary
single-particle orbitals as

N
12
n(/) = loi(F), (5)
i
and performing a variational minimization of the energy with respect to these orbitals yields the
so-called Kohn-Sham equations:
n(r)
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In Eq. (6), IA/}/mp = %7“2 and Vyc are the external trap and exchange-correlation potentials
respectively. {¢;(7)} are the Kohn-Sham orbitals and {e;} are the corresponding eigenvalues.
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Once the system of N nonlinear equations in Eq. (6) are solved simultaneously, the ground state
density may be reconstructed from the solutions using Eq. (5).

The exchange-correlation energy e x¢(7) used in Egs. (4) and (6) has been previously derived
by two of the authors [19]. In order to overcome the numerical problems caused by the singularity
at r = 0, we use a regularization scheme to treat the Hartree and exchange potentials together.
The regularized interaction is given by

Ar (r2 4 02)3/2 ’

(7)

Ureg (1) =

in which ¢ is a short range cutoff and one recovers the bare interaction in the o — 0 limit. With
the introduction of this cutoff, the sum of the Hartree and exchange energy becomes
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which is regular for small r.

3. Results and Discussion

The results presented in this paper were obtained by means of the self-consistent solution of
Eq. (6) varying the two parameters of interest, namely the coupling constant g44 and the particle
number N. We present few-particle results, in particular N = 3 and N = 21 for small to
moderate interaction strengths. The effect of varying o is illustrated in Fig. 1(a) where the total
LDA energy per particle is displayed for a fixed g4q value of 1.0 for N = 3 and N = 21. Good
convergence is obtained for both in a rather large range after o = 0.2.. All results were obtained
for a o of 0.2¢. Fig. 1(b) displays the total LDA energy per particle for a system of 3 particles as
a function of g4q while Fig. 1(c) depicts the energy for 21 particles. For ggq = 0, the energy for
noninteracting, polarized particles in a harmonic trap is recovered. As g4q increases, the energy
is initially seen to slowly increase as expected from the repulsive nature of the interaction.
However, shortly before g4q = 1.0, the energy plunges to negative values and decreases rapidly.
This behavior can be explained by considering the Hartree and exchange-correlation energies
separately as also presented in Fig. 1. In both cases, the Hartree and exchange-correlation
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Figure 1. Total energy per particle as a function of o (a); total energy (red squares), Hartree
energy (green circles) and exchange-correlation energy (blue circles) per particle for N = 3 (b)
and N = 21 (c) as a function of interaction strength, g44.

energies behave in a similar manner but with opposite signs. In the weak interaction region,
the kinetic, trap and Hartree energies keep the total energy positive while as the interaction
strength increases, the exchange-correlation energy dominates bringing the total energy down
to large, negative values.
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The transition in behavior from repulsive to attractive interaction evident from the energies,
is also observed in the density profiles. Fig. 2 and Fig. 3 display density profiles for 3 and 21
particles respectively, for a series of selected g4q values.
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Figure 2. Density profiles for N = 3 Figure 3. Density profiles for N = 21
and gq4q values varying between 0 and and gg4q values varying between 0 and
1.5. 1.5.

While the spatial extent of the density is mostly constant in the weak interaction region, a
noticeable narrowing is observed once the exchange-correlation term begins to dominate.

In addition to the shift in behavior, the shape of the profiles demands attention. A common
feature of all the density profiles obtained in this study is the central crater for r = 0 (see Fig. 4).
This dip occurs independently of regularization cutoff and interaction strength but its existence
depends upon particle number. While some particle numbers a crater as in the present case,
others yield a peak. As the density decays away from the origin, well-distinguished terraces are
observed as seen in Fig. 4(a) and (b), which are more pronounced for larger particle numbers.
These subtle features in the density profile have not been previously identified by using simpler
approximations such as variational approaches [20] or the Thomas-Fermi approximation [21, 22].

4. Conclusions

In this short manuscript, an LDA-DFT treatment of dipolar fermions, harmonically confined in
two dimensions, was developed. A regularized dipolar interaction has been used to treat the
Hartree and exchange-correlation terms in order to avoid singularities. Energies and density
profiles for N = 3 and 21 particles have been presented for a range of interaction strengths
ranging from weak to moderate. In the weak interaction region, the classical part of the energy
(kinetic, trap and Hartree) was observed to be the deciding factor for determining the energy
values as well as density profiles. For larger interaction strengths, the exchange-correlation term
was seen to grow rapidly in the negative direction and dominating the behavior of the system.
This result is in contrast to Coulombic systems where exchange and correlation energies are
ordinarily a small portion of the total energy. It therefore underlines the importance of the full
quantum mechanical treatment of the dipolar problem.
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Figure 4. Cross-section (y = 0) of density profiles for g4q = 0.5 (a) and g4q = 1.5 (b). In each
plot, radial density profiles for N = 3 and N = 21 are displayed.
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