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Abstract. We investigate magnetic properties of a strongly interacting ultracold Fermi
gas. Within the framework of an extended T -matrix approximation, we calculate the spin
susceptibility χ in the unitarity limit. We show that effects of pairing fluctuations on this
magnetic quantity are quite different in between the normal state and the superfluid phase.
In the normal state, pairing fluctuations cause spin-gap phenomenon near the superfluid phase
transition temperature Tc, where χ is anomalously suppressed. In the superfluid phase, on
the other hand, the ordinary suppression of χ by the BCS energy gap is weakened by pairing
fluctuations, because they induce finite density of states inside the gap. Our results indicate that
the spin susceptibility is a useful quantity for the study of pairing fluctuations in the BCS-BEC
crossover regime of an ultracold Fermi gas.

1. Introduction
An ultracold Fermi gas is now widely recognized as a useful quantum many-body system[1, 2].
Indeed, using a tunable pairing interaction associated with a Feshbach resonance, we can
systematically examine how a weak-coupling BCS-type Fermi superfluid continuously changes
into the Bose-Einstein condensation (BEC) of tightly bound molecules[3, 4, 5, 6, 7, 8, 9, 10, 11].
In the intermediate coupling regime where strong pairing fluctuations exist, we can study strong-
coupling physics beyond the mean-field level.

While the cold Fermi gas system has the above mentioned advantage, compared with
the electron system, there are not so many experimental techniques to observe various
physical quantities. Although this weak point is gradually being overcome by recent extensive
experimental efforts[12, 13, 14, 15, 16, 17, 18], the current stage of cold Fermi gas physics still
needs ideas to observe strong coupling phenomena within the current experimental techniques.

In this paper, we investigate the uniform spin susceptibility χ in a unitary Fermi gas both
above and below Tc. This magnetic quantity has recently become possible to observe in this
field[15, 16, 17, 18]. (Note that spins σ =↑, ↓ in this system are actually pseudospins describing
two atomic hyperfine states.) Since χ is sensitive to the formation of (pseudo)spin-singlet pairs,
the observation of this quantity is expected to give useful information about pairing fluctuations.
In this paper, including strong-coupling effects within the framework of an extended T -matrix
approximation (ETMA)[19, 20, 21], we calculate χ both above and below Tc. In the normal
state, we show that pairing fluctuations cause the spin-gap phenomenon, being characterized by
the suppression of χ. In the superfluid phase, on the other hand, pairing fluctuations are found
to enhance χ, reflecting that they smear the BCS excitation gap in the density of states. We
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Figure 1. (a) Diagrammatic representation of the Dyson equation for the 2× 2-matrix single-

particle Green’s function Ĝ (double-solid line). The solid line is the bare Green’s function Ĝ0

with no self-energy correction. The wavy line is the particle-particle scattering matrix Γ̂ which
is diagrammatically given as panel (b). In panel (b), the dashed line is the pairing interaction

−U , and Π̂ = {Πij} is the pair-correlation function given in Eq. (5).

also compare our results with the recent experiment on a superfluid 6Li Fermi gas. Throughout
this paper, we take h̄ = kB = 1, and the system volume is taken to be unity, for simplicity.

2. Formulation: Extended T -matrix approximation
We consider a two-component Fermi gas described by the ordinary BCS model. Since we
deal with both the normal and superfluid phases, it is convenient to employ the Nambu
representation[22]. In this formalism, the BCS Hamiltonian is written as[23, 24]

H =
∑
p

Ψ†
p

[
ξp,↑

τ3 + 1

2
+ ξp,↓

τ3 − 1

2
−∆τ1

]
Ψp − U

∑
q

ρ+(q)ρ−(−q). (1)

Here, Ψ†
p = (c†p,↑, c−p,↓) is the Nambu field, where cp,σ is the annihilation operator of a Fermi

atom with pseudospin σ =↑, ↓, describing two atomic hyperfine states. ξp,σ = p2/2m−µ−σh is
the kinetic energy of a Fermi atom, measured from the Fermi chemical potential µ (where m is
an atomic mass). In this paper, although we consider the unpolarized case, we have introduced
an infinitesimally small effective magnetic field h in ξp,σ to calculate the spin susceptibility.
−U is a pairing interaction, which is related to the s-wave scattering length as as 4πas/m =
−U/[1 − U

∑ωc
p

m
p2
] (where ωc is a cut-off energy)[6]. In Eq. (1), ρ±(q) = [ρ1(q) ± iρ2(q)]/2,

where ρj(q) =
∑

pΨ
†
p+q/2τjΨp−q/2 (j = 1, 2) are the generalized density operators[23, 24]

(where τj (j = 1 ∼ 3) are the Pauli matrices acting on the particle-hole space). In Eq. (1), the
superfluid order parameter ∆ = U

∑
p⟨c−p,↓cp,↑⟩ is taken to be real and is proportional to the τ1

component without loss of generality. In this case, ρ1 and ρ2 physically describe amplitude and
phase fluctuations of the order parameter ∆, respectively[23]. In this paper, we ignore effects of
a harmonic trap and consider a uniform Fermi gas, for simplicity.

Strong-coupling effects on single-particle excitations are taken into account by the self-energy
Σ̂(p, iωn) in the 2× 2-matrix single-particle thermal Green’s function,

Ĝ(p, iωn) =

(
G11(p, iωn) G12(p, iωn)
G21(p, iωn) G22(p, iωn)

)
=

1

iωn − ξp,↑
τ3+1
2 − ξp,↓

τ3−1
2 +∆τ1 − Σ̂(p, iωn)

,

(2)
where ωn is the fermion Matsubara frequency. In the extended T -matrix approximation
(ETMA), the Dyson equation for the Green’s function in Eq. (2) is diagrammatically described
as Fig.1. The resulting 2× 2-matrix self-energy is given by

Σ̂(p, iωn) = −T
∑
q,iνl

∑
i,j=±

Γij(q, iνl)τ−iĜ(p− q, iωn − iνl)τ−j . (3)
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Here, νl is the boson Matsubara frequency, and

Γ̂(q, iνl) =

(
Γ−+(q, iνl) Γ−−(q, iνl)
Γ++(q, iνl) Γ+−(q, iνl)

)
= −U

[
1 + U

(
Π−+(q, iνl) Π−−(q, iνl)
Π++(q, iνl) Π+−(q, iνl)

)]−1

, (4)

is the particle-particle scattering matrix, where

Πij(q, iνl) = −T
∑
p,iωn

Tr
[
τiĜ

0(p+ q, iωn + iνl)τjĜ
0(p, iωn)

]
(5)

is the lowest-order pair-correlation function. Ĝ0(p, iωn) is the bare Green’s function given by

Eq.(2) with Σ̂=0.

The superfluid order parameter ∆ is determined from the condition, det[Γ̂(q = 0, iνl =
0)]−1

h=0 = 0[24], which gives

1 = U
∑
p

1

2Ep
tanh

Ep

2T
, (6)

where Ep =
√
(p2/2m− µ)2 +∆2. Although Eq. (6) has the same form as the ordinary BCS gap

equation, the Fermi chemical potential µ in this equation is known to remarkably deviate from
the Fermi energy εF in the unitarity limit[6]. This strong-coupling correction can be conveniently
incorporated into the theory by solving the gap equation (6), together with the equation for the
number N of Fermi atoms, N = 2T

∑
p,iωn

G11(p, iωn)|h=0. In the normal state (∆ = 0), we
only solve the number equation to determine µ as a function of the temperature.

The uniform spin susceptibility χ(T ) is calculated from

χ(T ) =
∂∆N

∂h

∣∣∣∣
h→0

= T
∑
p,iωn

Tr
∂Ĝ(p, iωn)

∂h

∣∣∣∣∣
h→0

. (7)

Here, ∆N = N↑ − N↓, where Nσ is the number of Fermi atoms in the σ component. In this
paper, we numerically evaluate Eq. (7) by taking a small but finite value of h.

We note that the self-energy Σ̂TMA in the ordinary T -matrix approximation (TMA)[24, 25,

27, 28, 29, 30] is obtained by replacing the renormalized Green’s function Ĝ in Eq. (2) with the

bare one Ĝ0. The strong-coupling theory developed by Nozières and Schmitt-Rink (NSR)[5] is
also reproduced by expanding the Green’s function in Eq. (2) with the self-energy being replaced

by ΣTMA to O(Σ̂TMA). While the TMA and the NSR theory have been extensively used to clarify
various BCS-BEC crossover physics in ultracold Fermi gases[8, 9, 24, 25, 26, 27, 28, 29, 30], they
are known to unphysically give negative spin susceptibility in the crossover region[19, 31, 32].
On the other hand, it has recently been shown that the ETMA can correctly describe the spin
susceptibility in the whole BCS-BEC crossover region[19, 21, 33], and the results agree well with
the recent experiment on a 6Li normal Fermi gas in the BCS regime[19]. Thus, in this paper,
we also employ the ETMA to examine strong-coupling corrections to χ in the unitarity limit.

3. Spin susceptibility in a unitary Fermi gas
Figure 2(a) shows the spin susceptibility χ in a unitary Fermi gas ((kFas)

−1 = 0). In the normal
state, the ETMA spin susceptibility is smaller than the mean-field result (‘MF’ in this figure),
and decreases with decreasing the temperature when T/TF ≤ 0.37. Since pairing fluctuations
are completely ignored in the mean-field theory, this spin-gap behavior of χ originates from
strong pairing fluctuations near Tc.

We briefly note that the present ETMA gives the first-order phase transition as shown in the
inset in Fig. 2(a), which is, however, an artifact of this strong-coupling theory. This leads to the
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Figure 2. (a) Calculated ETMA spin susceptibility χ in a unitary Fermi gas ((kFas)
−1 = 0),

normalized by the spin susceptibility χ0(0) of a free Fermi gas at T = 0. The temperature is
normalized by the Fermi temperature TF. ‘MF’ is the mean-field BCS result in Eq. (8) where
µ and ∆ evaluated in the ETMA are used. (Note that the expression is reduced to that for a
free Fermi gas above Tc, except that the ETMA result for µ is used.) The solid circle shows the
recent experiment on a 6Li Fermi gas[15]. The inset shows ∆(T ). (b) Single-particle density of
states ρ(ω) at Tc. ρ0(0) is the density of states at the Fermi level for a free Fermi gas. ’MF’ is
the density of states for a free Fermi gas where µ obtained in the ETMA is used. (c) ρ(ω) in the
superfluid state at T = 0.72Tc. ’MF’ is the superfluid density of states in the mean-field BCS
theory where µ and ∆ obtained in the ETMA are used.

singular behavior of χ near Tc seen in Fig. 2(a). In this regard, we recall that the same problem
exists in the TMA[24], as well as the NSR theory[34]. Although the improvement of the ETMA
so as to recover the expected second-order superfluid phase transition is a crucial issue[35, 36],
we leave this as a future problem.

In the superfluid phase, apart from the above mentioned singularity just below Tc, χ decreases
with decreasing the temperature, as shown in Fig. 2(a). Although this behavior is already seen
in the mean-field case, the decrease is more remarkable in the latter. In the mean-field BCS
theory, the spin susceptibility is given by[38]

χ =
1

2T

∫ ∞

−∞
dωρ(ω)sech2

ω

2T
, (8)

so that the decrease of the spin susceptibility below Tc is found to be deeply related to the
development of the BCS gap in the superfluid density of states ρ(ω). Evaluating ETMA density
of states using the formula,

ρ(ω) = − 1

π

∑
p

ImG11(p, iωn → ω + iδ), (9)

we find from Fig. 2(c) that pairing fluctuations make ρ(ω) gapless even below Tc. As a result,
compared with the mean-field case, the suppression of χ is less remarkable. Thus, although
pairing fluctuations suppress χ above Tc, they enhance χ below Tc.

We briefly note that our result is close to the recent experiment on a 6Li Fermi gas (solid
circle in Fig. 2(a))[15]. Our results are also consistent with the recent quantum Monte-Carlo
simulation[39], as well as the results in the self-consistent T -matrix approximation[40].

4. Summary
To summarize, we have discussed strong-coupling corrections to the spin susceptibility χ in a
unitary Fermi gas. Within the framework of an extended T -matrix approximation, we showed
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that effects of pairing fluctuations on this magnetic quantity are different in between the normal
state and the superfluid phase. In the normal state, pairing fluctuations suppress χ, leading
to the spin-gap phenomenon near Tc. In the superfluid phase, pairing fluctuations enhance χ,
because they induce finite density of states inside the BCS gap. Since the spin susceptibility is
observable in ultracold Fermi gases, our results would be useful for the study of strong-coupling
physics in the BCS-BEC crossover region using the uniform spin susceptibility.
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27th International Conference on Low Temperature Physics (LT27) IOP Publishing
Journal of Physics: Conference Series 568 (2014) 012019 doi:10.1088/1742-6596/568/1/012019

5



Γ0χDOS], so that the latter becomes negative when ΓχDOS > 1. We also note that the so-called GG0
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