
Study of coupled QED-cavities using the

self-consistent Mori projector method

Sumie Okubo,1,2,? Mikio Eto,1 Peter Degenfeld-Schonburg,2 and
Michael J. Hartmann3

1Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama
223-8522, Japan, 2Technische Universität München, Physik Department, James Franck Straße,
85748 Garching, Germany, 3Institute of Photonics and Quantum Science, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom

E-mail: sumieo@rk.phys.keio.ac.jp?

Abstract. We study the non-equilibrium properties of nonlinear QED-cavities coupled via
photon tunneling in the presence of dissipation and coherent pumping. To illustrate the
interplay between photon leakage, Rabi oscillations, and coherent photon hopping, we examine
the dynamical evolution and the stationary states of finite cavity arrays in the highly nonlinear
regime. Finally, we employ a cluster version of the self-consistent Mori projector method and
show both its accuracy and efficiency for the determination of local quantities in the highly
complex many-body situation at hand.

1. Introduction
The study of light-matter interactions in cavity electrodynamics (QED) has always been a field of
high interest [1]. In recent years strong theoretical and experimental progress was made towards
the goal of investigating the physics of coupled QED-cavities [2]. An array of such QED-cavities,
in which photons can tunnel to neighboring sites, yields a platform to study non-equilibrium
many-body problems [3]. The competition between physical processes such as Rabi oscillations
driven by an external laser, coherent oscillation between the cavities due to photon tunneling,
and dissipation due to the photon loss from the cavities leads to a variety of interesting many-
body phenomena, with non-equilibrium phase transitions being one prominent example among
them [4, 5].

In this work, we examine the non-equilibrium properties of photons in a one-dimensional array
of QED-cavities. The Hamiltonian of the system is described by the Bose Hubbard Hamiltonian
together with a term describing a coherent laser drive [6]. The photon loss from the cavities
is described by standard Lindblad dissipators [7]. First, we investigate the time evolution of
photons in a finite array of cavities to illustrate the dynamical character of this complex system.
In this case, we solve the equation of motion for the density matrix numerically. Next, we employ
the self-consistent Mori projection method (c-MoP), which was recently developed in Ref. [8], to
study the steady state of an infinite cavity array. This method determines the reduced density
matrix for a single cavity, or a cluster of a few cavities, in a self-consistent way. We show that the
calculated results with two- or three-cavity clusters are in good agreement with a numerically-
exact solution obtained by the time-dependent density-matrix renormalization group (t-DMRG)
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Figure 1. On-site photon numbers in an array of two cavities (N = 2), as a function of
time. The detuning and dissipation parameters are (a-1) ∆ = 0 and γ = 0, (a-2) ∆ = 0 and
γ/Ω = 0.25, (b-1) ∆/Ω = 0.3 and γ = 0, (b-2) ∆/Ω = 0.3 and γ/Ω = 0.25, respectively. The
tunneling rate of photons is J/Ω = 0 (solid line), J/Ω = 1 (dashed line), and J/Ω = 2 (grey
solid line) in all the panels.

method [8, 9]. In contrast to t-DMRG, however, we emphasize that c-MoP is suitable for any
lattice dimensions and arbitrary geometry.

2. Model
We examine an effective model for photons in a one-dimensional array of N QED-cavities, after
the qubit degrees of freedom are integrated out [6]. The coherent motion of photons is described
by the Bose Hubbard model in a driving laser field of strength Ω/2,

H =
N∑

j=1

[
∆a†jaj +

U

2
a†ja

†
jajaj +

Ω
2

(a†j + aj)
]
− J

N−1∑
j=1

(a†jaj+1 + a†j+1aj). (1)

Here, the Hamiltonian is written in a frame rotating with the frequency ω of the laser.
∆ = ωqubit − ω is the difference between the qubit excitation frequency and the laser frequency.
Photons interact with each other in a cavity with energy U and tunnel to the neighboring cavities
with rate J . We restrict ourselves to the case of U → ∞, in which the number of photons is
unity or zero in each cavity.

We take the photon loss from the cavities with a constant rate γ into account. The density
matrix ρ(t) evolves according to the Liouville equation of motion [10],

ρ̇(t) = Lρ(t) = −i [H, ρ(t)] +
γ

2

N∑
j=1

[
2ajρ(t)a†j − a†jajρ(t) − ρ(t)a†jaj

]
. (2)

We solve this equation numerically for finite arrays (N = 2, 3, 4) in section 3 and apply the
self-consistent Mori projector approach to an infinite array in section 4.
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Figure 2. On-site steady-state photon numbers in a finite array of cavities as a function of the
tunneling rate J with finite dissipation [γ = (2/3)Ω]. The detuning parameter is (a) ∆ = 0 and
(b) ∆/γ = 0.6. The array size is N = 2 (dash-dotted line), N = 3 (red solid line), and N = 4
(orange dashed line) with periodic boundary conditions.

3. Time evolution and steady states of small size arrays
To elucidate the dynamical properties of the system under study, we begin with an array of two
QED-cavities (N = 2). Figure 1 shows the time evolution of the photon number in a cavity for
the initial state, |φ(t = 0)〉 = |0〉1 ⊗ |0〉2. We tune the laser frequency to resonance, i.e. ∆ = 0,
in panels (a-1) and (a-2) while ∆/Ω = 0.3 in (b-1) and (b-2). The photon loss from the cavities
is absent in (a-1) and (b-1), whereas it is present in (a-2) and (b-2).

In the absence of dissipation due to photon loss, the photon number coherently oscillates. In
panel (a-1), the Rabi oscillation changes the photon number between zero and unity for J = 0
(solid line). The tunneling rate J complicates the oscillation, reflecting the coexistence of the
Rabi oscillation in a cavity and coherent oscillation between the cavities. In panel (b-1) with
finite ∆, the Rabi frequency is given by

√
Ω2 + ∆2 for J = 0. The maximum of the photon

number is less than unity in this case. In panels (a-2) and (b-2), the oscillation is damped
to a steady state by the dissipation. (We also analyze the operator L in Eq. (1). One of its
eigenvalues is zero, the eigenstate of which represents the steady state. The other eigenvalues
have a negative real part, which determine the damped oscillation or overdamping.)

Next, we examine the photon numbers in the steady state with finite γ. In Fig. 2, we plot
the photon numbers as a function of the tunneling rate J . The size of the array is N = 2, 3 or
N = 4 with periodic boundary conditions. When the resonant condition is satisfied (∆ = 0),
the photon number monotonically decreases with J , as shown in Fig. 2(a). The photon number
is maximal at J = 0 due to the Rabi oscillations in a cavity, which is disturbed by the tunneling
between neighboring cavities, resulting in a decrease of the photon number with increasing J .
In fact, the tunneling rate J shifts the energy levels of the two cavity system resulting in an
effective detuning of the laser drive [6, 11]. Hence, the finite detuning ∆ in Fig. 2(b) leads to
a maximal photon number at a finite value of J . These features of the photon numbers are
commonly observed for N = 2, 3, and 4, and also hold true for larger arrays as we show below.

4. Steady state of large size arrays
Now we investigate an infinite one-dimensional array of QED-cavities by applying a cluster
version of the self-consistent Mori projection (c-MoP) method [8] to this problem.

In the c-MoP method, the entire many-body system is divided into a subsystem of interest
which we refer to as the “system,” and the remainder of the lattice which we refer to as the
“environment.” The closed equations for the reduced density matrix of the “system” are derived
by imposing a self-consistent condition to that of the “environment” which holds true because
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Figure 3. On-site steady-state photon numbers in an infinite array of cavities, as a function of
the tunneling rate J with finite dissipation [γ = (2/3)Ω]. The detuning parameter is ∆/γ = 0.6.
The calculation is performed by single-cavity c-MoP (black dash-dotted line), 2-cavity c-MoP
cluster (red dotted line), and 3-cavity c-MoP cluster methods (orange dashed line). The data
obtained by a t-DMRG integration is shown by the green solid line.

of translation invariance in the full equation of motion, see Eqs. (1) and (2). In our study, the
“system” is a single cavity, or a cluster of few cavities, which couples to the “environment”
via photon tunneling on the boundaries. For a detailed description, see Ref. [8] and references
therein.

For the “system” of a single cavity, which we denote by the index n0, we need to solve the
following algebraic equation of motion for the steady state of the reduced density matrix ρss

n0
,

0 = Ln0ρ
ss
n0

+ iZJ
[
an0Trn{a†nρss

n } + a†n0
Trn{anρss

n }, ρss
n0

]
−

ZJ2
∑

j={+,−}

[
a†n0

,

∫ ∞

0
dτ eτLn0

(
dj(ρss

n ) δaj
n0

ρss
n0

− sj(ρss
n ) ρss

n0
δaj

n0

)]
+ H.c

 ,
(3)

where Z is the number of nearest neighbors, a+
n = a†n, a−n = an, δaj

n = aj
n − Trn{aj

nρss
n }, and

dj(ρss
n ) =Trn{aneτLn(δaj

n)†ρss
n }, (4)

sj(ρss
n ) =Trn{aneτLnρss

n (δaj
n)†}. (5)

In Eq. (3), ρn is the reduced density matrix for site n. The Liouville operator Ln0(·) =
−i[Hn0 , (·)] + γ/2[2an0(·)a

†
n0 − a†n0an0(·) − (·)a†n0an0 ] describes the dynamics of the “system”

without the coupling to the “environment.” As a self-consistent condition, we replace ρn by ρn0

in Eqs. (3)–(5), which yields closed algebraic equations for ρn0 .
We make three comments. (i) The c-MoP method up to first order in the “system”-

“environment” coupling J , see the first two terms on the right hand side of Eq. (3), is equivalent
to the mean-field approximation [12, 13]. The term proportional to J2 explicitly takes system-
environment correlations into account, and thus, we gain a much more accurate result than the
results obtained with a mean-field Ansatz [8]. (ii) When the “system” is a cluster consisting
of two or three neighboring cavities, we obtain very similar self-consistent equations for the
reduced density matrix. The larger size of the “system” yields the better approximation. (iii)
The numerical task to solve for ρss

n0
in Eq. (3) is comparable to the numerical task to solve
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a mean-field equation which can be done very efficiently as it only involves the dimension of
the local Hilbert space. Even the integral over the dynamical map eτLn0 only demands the
diagonalization of Ln0 which is again a local operator. In contrast to DMRG methods which
work only efficient in 1D, the c-MoP equations do not change their structure by going from one-
dimensional arrays to higher dimensional lattices and are therefore well suited for the treatment
of problems with an arbitrary lattice geometry.

Figure 3 shows the calculated results for the photon numbers in the steady state by the
c-MoP method for different values of the tunneling rate J . The “system” consists of a single
cavity (black dash-dotted line), a two-cavity cluster (red solid line), and a three-cavity cluster
(orange dashed line). Further we show the result obtained by a t-DMRG integration of Eq.
(2) with N = 21 lattice sites and open boundary conditions. From this t-DMRG numerics we
extract the reduced density matrix for the central site n0 = 11 and the corresponding photon
number (green solid line). Although we find a deviation from this numerically-exact result in
the case of single-site c-MoP, the calculation with two- or three-site c-MoP clusters shows a good
agreement with the t-DMRG result. This clearly indicates the suitability of the c-MoP method
to examine this non-equilibrium many-body problem.

5. Conclusion
We have studied the non-equilibrium many-body problem of a one-dimensional array of QED-
cavities. For a finite array, we have elucidated the complex and rich interplay between Rabi
oscillations in a cavity driven by the laser, coherent oscillation induced by tunneling of photons
between neighboring cavities, and the dissipative effects of photon losses from the cavities,
leading to the relaxation of the array to a non-equilibrium steady state. For an infinite array,
we have adopted the c-MoP method to calculate the reduced density matrix of subsystem in
a self-consistent way. We have found that the two- or three-cavity c-MoP cluster method is a
powerful tool to study the complex many-body behavior of coupled QED-cavities on a lattice in
any dimension and arbitrary lattice geometry.
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