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Abstract. We investigate strong-coupling properties of a unitary Fermi gas consisting of two
different species with different masses. Including pairing fluctuations within the self-consistent
T -matrix approximation, we calculate the single-particle density of states in the normal state.
We show that the pseudogap phenomenon, which is characterized by a dip structure in the
density of states around ω = 0, appears more remarkably in the light mass component than in
the heavy mass component. As a result, the pseudogap temperature, which is determined as
the temperature at which the pseudogap disappears in the density of states, is higher in the
former than in the latter. We also find that this different pseudogap temperatures lead to the
existence of two kinds of pseudogap regions. That is, one is the ordinary pseudogap regime
where the pseudogap appears in both the component, and the other case is that the light
mass component only exhibits the pseudogap phenomenon. As the origin of these component-
dependent pseudogap phenomena, we point out the importance of different Fermi temperatures
between the two components. Since the formation of hetero-Cooper pairs and their condensation
are expected in various systems, such as a 6Li-40K Fermi gas mixture, an exciton (polariton)
gas, as well as color superconductivity, our results would be useful for the understanding of
strong-coupling properties of these novel Fermi condensates.

1. Introduction
Although superfluid 40K[1] and 6Li[2] Fermi gases have attracted much attention in cold Fermi
gas physics especially on the viewpoint of the BCS-BEC crossover[3, 4], they still belong to
the same category as metallic superconductivity in the sense that Cooper pairs are formed
between the same species. Thus, since the realization of these atomic Fermi superfluids, further
possibilities beyond the homo-pairing have been explored in cold Fermi gas physics. At present,
a tunable interaction associated with a Feshbach resonance has been realized in a 6Li-40K
Fermi mixture[5, 6, 7, 8, 9], and 6Li-40K hetero-molecules have been observed[7], although their
superfluid phase transition has not been reported yet. Once the superfluid phase transition is
achieved in this system, we would be able to systematically study the BCS-BEC crossover physics
in this hetero-pairing state by adjusting the interaction strength associated with a Feshbach
resonance. Since the so-called Sarma state[10] is predicted in a mass-imbalanced Fermi gas[11],
the assessment of this prediction would also become possible. In addition, since hetero-pairs
have been also discussed in various fields, such as semiconductor physics (excitons [12, 13],
exciton-polaritons [14, 15]), as well as high-energy physics (color superconductivity [16, 17]),
the realization of a hetero-superfluid Fermi gas would widely contribute to the understanding of
these novel Fermi condensates.

27th International Conference on Low Temperature Physics (LT27) IOP Publishing
Journal of Physics: Conference Series 568 (2014) 012004 doi:10.1088/1742-6596/568/1/012004

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



In the current stage of research for a superfluid Fermi gas with mass imbalance, the
achievement of the superfluid phase transition temperature Tc is a crucial issue. In this regard,
the so-called pseudogap phenomenon, which is characterized by a gap-like structure in the
single-particle excitations above Tc, would be helpful, because this precursor phenomenon of the
superfluid phase transition gradually becomes remarkable as one approaches Tc. Thus, using
this, one can evaluate to what extend the system is close to the superfluid instability. Recently,
a photoemission-type experiment has become possible[18], and pseudogapped single-particle
excitation spectra have been observed in a mass-balanced 40K Fermi gas[18]. The observed
pseudogap structures agree well with strong-coupling calculations[19, 20, 21, 22, 23]. Thus, this
experimental technique would also be useful for the observation of the pseudogap phenomenon
in the presence of mass imbalance.

In this paper, we investigate single-particle excitations and strong-coupling effects in a unitary
Fermi gas with mass imbalance. In our previous paper[24], we showed that the ordinary T -
matrix approximation (TMA), which has been extensively used to successfully explain various
BCS-BEC crossover physics in the mass-balanced case, breaks down in the presence of mass
imbalance. To overcome this difficulty, we have extended the TMA to include higher-order
pairing fluctuations[24, 25]. Although this extended T -matrix approximation (ETMA) can
partially solve this difficulty, it was found to still give unphysical results in the highly mass-
imbalanced regime, originating from an inconsistent treatment of the single-particle Green’s
function. Thus, in this paper, we further extend the ETMA to completely eliminate this
inconsistency. For this purpose, we employ the self-consistent T -matrix approximation[26, 27],
to examine the pseudogap phenomenon and effects of mass imbalance. From the temperature
dependence of the pseudogapped density of states, we determine the pseudogap temperatures in
both the light mass and the heavy mass components, each of which is defined as the temperature
at which a dip structure in the density of states disappears. Throughout this paper, for simplicity,
we put h̄ = kB = 1, and the system volume V is taken to be unity.

2. Formalism
We consider a two-component Fermi gas with mass imbalance, described by the Hamiltonian,

H =
∑

p,σ=L,H

ξpσc
†
pσcpσ − U

∑
q

∑
p,p′

c†p+q/2,Lc
†
−p+q/2,Hc−p′+q/2,Hcp′+q/2,L, (1)

where cpσ is the annihilation operator of a Fermi atom with the kinetic energy ξpσ =
p2/(2mσ) − µσ, measured from the Fermi chemical potential µσ. The pseudospin σ describes
the light mass component (σ = L) with an atomic mass mL, and the heavy mass component
(σ = H) with an atomic mass mH. −U is a tunable pairing interaction, which is related to the
s-wave scattering length as as 4πas/m = −U/[1− U

∑
p(m/p2)] (where 2m−1 = m−1

L +m−1
H is

twice the reduced mass). In this paper, we consider the unitarity limit (kFas)
−1 = 0 (where

kF = (3π2N)1/3 is the Fermi momentum, with N being the total number of Fermi atoms). For
simplicity, we consider a uniform Fermi gas, ignoring effects of a harmonic trap.

Strong-coupling effects are conveniently described by the self-energy Σσ(p, iωn) in the single-
particle thermal Green’s function,

Gσ(p, iωn) =
1

iωn − ξpσ − Σσ(p, iωn)
, (2)

where ωn is the fermion Matsubara frequency. In the self-consistent T -matrix approximation
(SCTMA)[26, 27], the self-energy has the form

Σσ(p, iωn) = T
∑
q,νn

Γ(q, iνn)G−σ(q − p, iνn − iωn). (3)
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Γ Γ= +

Figure 1. Particle-particle scattering matrix Γ in the SCTMA. The double solid line is the
dressed Green’s function G in Eq. (2). The dotted line is the pairing interaction −U .

Here, νn is the boson Matsubara frequency, and −σ means the opposite component to σ. In Eq.
(3), the particle-particle scattering matrix Γ(q, iνn) is diagrammatically given as Fig.1, which
gives Γ(q, iνn) = −U/[1− UΠ(q, iνn)], where

Π(q, iνn) = T
∑
k,iωn

GL(k + q/2, iνn + iωn)GH(−k + q/2,−iωn) (4)

is the pair-correlation function.
As usual, the superfluid phase transition temperature Tc, as well as the chemical potentials

µL and µH, are self-consistently determined by solving the Thouless criterion [28]

[Γ(q = 0, iνn = 0)]−1 = 0, (5)

together with the number equations

NL = NH =
N

2
, (6)

where
Nσ = T

∑
p,iωn

Gσ(p, iωn). (7)

In the normal state above Tc, we only solve the number equation (6), to determine µL and µH.
The single-particle density of states ρσ(ω) is then calculated from the analytic continued Green’s
function as

ρσ(ω) = − 1

π

∑
p

Im[Gσ(p, iωn → ω + iδ)]. (8)

We briefly note the difference between the present SCTMA and the previous ETMA used
in Refs.[24, 25]. The SCTMA is reduced to the ETMA formalism, when the dressed Green’s
function G in the pair-correlation function Π(q, iνn) in Eq. (4) is simply replaced by the bare
one,

G0
σ(p, iνn) =

1

iωn − ξpσ
. (9)

Thus, the ETMA involves the internal inconsistency that the bare Green’s function G0 in Eq.
(9) is used in Π(q, iνn), although the dressed Green’s function G is used in the self-energy in
Eq. (3). As shown in Ref.[24], this inconsistency becomes crucial in the highly mass imbalanced
regime, leading to the unphysical vanishing Tc in the BCS region. This problem is avoided in the
present SCTMA because of the fully self-consistent treatment of the dressed Green’s function[26],
so that we can safely discuss strong-coupling physics in the whole region 0 ≤ mL/mH ≤ 1. For
more details about the difference between the two approximations, we refer to Refs.[24, 26].
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Figure 2. Calculated density of states ρσ(ω) in a mass-imbalanced unitary Fermi gas at Tc.
(a) Light mass component. (b) Heavy mass component. εF = k2F/(2m), where kF = (3π2N)1/3,
and m is twice the reduced mass.
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Figure 3. Calculated density of states ρσ(ω) in a unitary Fermi gas when T ≥ Tc. (a) Light
mass component. (b) Heavy mass component. We take mL/mH = 0.15. TF = k2F/(2m), where

kF = (3π2N)1/3, and m is twice the reduced mass.

3. Pseudogapped density of states in a mass-imbalanced Fermi gas
Figure 2 shows the density of states in a unitary Fermi gas. In the mass-balanced case
(mL/mH = 1), one sees a dip structure around ω = 0 in each the component. Since the
superfluid order parameter vanishes at Tc, this is the pseudogap originating from strong pairing
fluctuations[22]. In the light mass component (Fig.2(a)), the pseudogap continues to exist even
in the highly mass imbalanced regime (mL/mH = 0.15 ≪ 1). In contrast, the dip structure in
Fig. 2(b) gradually becomes obscure with decreasing the ratio mL/mH of the mass imbalance, to
eventually disappear when mL/mH = 0.15. Thus, although the pseudogap originates from the
formation of preformed Cooper pairs consisting of atoms in both the components, the appearance
of this phenomenon is very different in between the two components.

This component-dependent pseudogap phenomenon is due to the fact that the Fermi
temperature TL

F = k2F/(2mL) in the light mass component is higher than the Fermi temperature
TH
F = k2F/(2mH) in the heavy mass component. The scaled temperature T/TH

F in the heavy
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Figure 4. Pseudogap temperature in the light mass component T ∗
L and that in the heavy

mass component T ∗
H in a unitary Fermi gas. TH

F is the Fermi temperature of the heavy mass
component.

mass component then becomes higher than T/TL
F in the light mass component, so that thermal

excitations smear out the pseudogapped density of states more remarkably in the former. In the
highly mass imbalanced case (mL/mH = 0.15), when we raise the temperature from Tc, while
the pseudogap structure is still seen at T/TF = 0.1 (where TF = k2F/(2m)) in the light mass
component (Fig.3(a)), Fig.3(b) shows that even the shoulder structure seen at Tc completely
disappears in the heavy mass component when T/TF = 0.1. At this temperature, one finds,

T

TH
F

= 0.38 >
T

TL
F

= 0.06, (10)

which means that the heavy mass component is effectively at much higher temperature than the
light mass component.

4. Component-dependent pseudogap temperatures
To identify the pseudogap regime in a quantitative manner, we conveniently introduce the
pseudogap temperature T ∗

σ (σ = L, H) in each component, as the temperature at which the dip
structure disappears in the density of states ρσ(ω). As expected from the discussions in Sec.3,
Fig. 4 shows T ∗

L > T ∗
H when mL/mH < 1. When mL/mH <∼ 0.15, the pseudogap no longer exists

in the heavy mass component even at Tc (See Fig. 2(b)), so that the pseudogap temperature
T ∗
H is absent there.
The component-dependence on the pseudogap phenomenon naturally leads to two kinds

of pseudogap regions. That is, when Tc ≤ T ≤ T ∗
H, the pseudogap appears in the both

components. On the other hand, the pseudogap can be seen only in the light mass component
when T ∗

H ≤ T ≤ T ∗
L [30].

In the highly mass imbalanced regime, Fig.4 shows that the pseudogap temperature T ∗
L in

the light mass component becomes higher than the Fermi temperature TH
F in the heavy mass

component. In this regard, we recall that the superfluid phenomenon is purely a quantum
phenomenon. Thus, this result indicates that, although the pseudogap phenomenon is a
precursor of this quantum phenomenon, the pseudogap is still seen in the light mass component
even when the heavy mass component is in the classical regime (T/TH

F
>∼ 1).
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Figure 5. Calculated ratio T ∗
L/Tc of the pseudogap temperature in the light mass component

to the superfluid phase transition temperature, as a function of mL/mH.

Figure 5 shows the ratio T ∗
L/Tc as a function of mL/mH. Since the superfluid phase transition

is a quantum phenomenon, both the components should be in the Fermi degenerate regime at
Tc, which leads to Tc < TH

F (< TL
F ). On the other hand, one finds TH

F < T ∗
L in the highly mass

imbalanced regime, as shown in Fig.4. Reflecting these, the ratio T ∗
L/Tc becomes large when

mL/mH becomes small, as shown in Fig. 5. This means that, even in the highly mass imbalanced
regime where Tc is very low, one can observe the pseudogap in the light mass component in the
relatively wide temperature region, Tc ≤ T ≤ T ∗

L .

5. Summary
To summarize, we have investigated strong-coupling properties of a unitary Fermi gas consisting
of two different species with different masses. Within the framework of the self-consistent T -
matrix approximation, we calculated the single-particle density of states in the normal state,
to examine effects of mass imbalance on the pseudogap phenomenon originating from pairing
fluctuations.

We showed that the pseudogap structure is more clearly seen in the light mass component
than in the heavy mass component. When we determine the pseudogap temperature in each
component (which is evaluated as the temperature at which the pseudogap structure disappears
in the density of states), it is higher in the light mass component (T ∗

L) than in the heavy
mass component (T ∗

H). As a result, we obtain two kinds of pseudogap region. In the region
Tc ≤ T ≤ T ∗

H, the pseudogap appears in both the components. When T ∗
H ≤ T ≤ T ∗

L , on
the other hand, the pseudogap only appears in the light mass component. In the highly mass
imbalanced regime, the pseudogap phenomenon does not occur in the heavy mass component,
so that the pseudogap temperature in this component is absent there.

The component-dependent pseudogap phenomena originates from the different Fermi
temperatures between the two components. The Fermi temperature TL

F in the light mass
component is higher than the Fermi temperature TH

F in the heavy mass component, so that
the scaled temperature T/T σ

F is always higher in the latter than in the former. As a result,
thermal effects in the heavy mass component is more remarkable for a given temperature T , so
that the pseudogap structure is easily smeared out thermally in this component, compared with
the light mass component.

In the case of a 6Li-40K Fermi gas mixture, one finds mL/mH = 6/40 = 0.15 ≪ 1. Thus,
in this case, the light mass component (6Li) is suitable for the observation of the pseudogap
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phenomenon. Since the pseudogap is a precursor of the superfluid phase transition, toward
the realization of the superfluid phase transition of this Fermi gas mixture, our results would
be helpful to assess to what extent the system is close to the superfluid instability using the
pseudogap phenomenon. In addition, since Fermi superfluids with hetero-Cooper pairs have also
been discussed in other fields, such as semiconductor physics (exciton gas and exciton-polariton
condensate), as well as high-energy physics (color superconductivity), our results would also
contribute to the study of these unconventional Fermi condensates.
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