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Abstract. Electron impact excitation from the ground state of bismuth atoms has been studied. 

A beam of electrons was scattered from a beam of atoms and the intensity of scattered 

electrons was measured for scattering angles up to 150
o

 and incident electron energies of 40 

and 60 eV. Obtained intensities were used for the calculation of relative differential cross 

sections (DCS). In addition, we recorded the energy loss-spectra at different incident electron 

energies and scattering angles. These spectra were analysed in order to identify the energy 

levels of bismuth atom below and above (autoionisation) the first ionization limit in electron 

spectroscopy. The presence of bismuth was confirmed in spectra of the chemically peculiar 

(CP) magnetic Ap 73 Dra and HR 465 and nonmagnetic Hg-Mn HR 7775 and χ Lupi stars. The 

obtained results for relative DCS and identified autoionised energy levels of bismuth were 

analysed and compared with previous experimental and theoretical data. The connection 

between our investigations of bismuth and astrophysical measurements are discussed. 

1. Introduction 

Bismuth is a heavy atom (Z=83) that is very interesting subject for investigations in many fields of 

physics including electron-atom scattering processes and investigation of chemical structure of the 

stellar atmospheres. The absorption and emission spectra of bismuth, including hyperfine structure, 

have been the subject of many detailed investigations in both laboratory environment [1-6] and in 

astronomy observation [7-11]. 

Only a few papers contain theoretical calculations [12-14] and experimental data [14] of the 

differential cross sections (DCSs) for elastic and inelastic electron scattering on bismuth atoms. 

Williams and Trajmar [14] measured DCSs for elastic and inelastic (excitation of the 6p
3
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D
3/2

, 
2

D
3/2
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3

P
1/2

, and 2p
2

7s 
4

P
1/2 

states) collisions at E
0
 = 40 eV and scattering angles from 0

o

 to 130
o

. The cross 

sections were normalised to an absolute scale using the optical oscillator strength (OOS) value by 

Lvov [15] for the 6p
3

 
4

S
1/2

 → 2p
2

7s 
4

P
1/2

 transition. To our knowledge, no calculations of DCSs exist 

for the inelastic electron scattering on bismuth atom. 

The presence of bismuth features in stellar spectra has been reported in different type of chemically 

peculiar (CP) stars. The position of CP stars in the Hertzsprung–Russell (HR) diagram is shown in 

figure 1. Guthrie [7] was the first who has reported and identified the BiI features in magnetic Ap 

(CP2) star 73 Dra at 472.2 nm. This line corresponds to the 6p
3 2

D
3/2

 → 6p
2

7s 
2

P
1/2

 transition and has 
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long been known to belong to the emission spectra of bismuth [1]. Two lines of the BiII (139.39 nm, 

143.683 nm) where identified from the IUE (International Ultraviolet Explorer) spectrum of the 

magnetic Ap star HR 465 [9]. Several strong absorption lines due to BiII were observed in 

nonmagnetic (CP3) Hg-Mn star HR 7775 in high-resolution spectra obtained with the IUE [8]. The 

HR 7775 is a part of a multiple-star system that includes the bright star HR 7776 (at a distance of 

205") and a close companion (the later to lie at a distance of 0.68" from HR 7775). Using high-

resolution spectra obtained from the Goddard High Resolution Spectrograph (GHRS) on Hubble 

Space Telescope (HSP) Wahlgren et al [10] were able to detect absorption features in spectra of the 

binary nonmagnetic Ap χ Lupi star that contains contributions from AsII and BiII. The strongest 

transition of BiII in the observed intervals is the 6p
2 3

P
2
 → 6p7s 

3

P
1
 transition at 190.23 nm. Its nine 

hyperfine components were studied by Bouzza and Bauche [16]. Selected lines at 143.683 nm (BiII) 

and 142.34 nm (BiIII) were studied in the ultraviolet spectrum of the χ Lupi [17], with conclusion that 

the bismuth abundance is only marginally enhanced in this star. Bismuth abundances in HR 7776 and 

χ Lupi stars have been the subject of an extensive study in ultraviolet region of wavelengths by 

Wahlgren et al [18]. In table 1 the summary of the results from this study is given. 

 

 

Figure 1. Approximate position of the chemically peculiar (CP) 

stars on Hertzsprung–Russell diagram 

 

Table 1. Bismuth abundances in HR 7775 and χ Lupi, logNBi
 includes the Solar system value of 

0.7 dex 

Wavelength 

(nm) 

Ion HR 7775 χ Lupi 

143.6 BiII < 5.5 < 2.3 

190.2 BiII < 6.0 < 2.7 

142.3 BiIII < 6.0 < 1.7 

 

Very good agreement among derived abundances for different lines for HR 77775 star is evident. 

In contrast, for χ Lupi a significant disagreement between abundance of BiII and BiIII was obtained 
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and an ionisation anomaly is apparent. Dolk et al [19] analysed the spectra of HR 7775 recorder by the 

Nordic Optical Telescope (NOT) in optical region. Fourteen BiII lines were detected in the range from 

407.9 to 680.09 nm. The Bismuth abundance was determined using the strongest lines, 514.4 and 

520.9 nm. The obtained value of 5.8 is in good agreement with results calculated by Wahlgren et al 

[18]. 

Line intensities in autoionising spectra of atoms for both ''allowed'' and ''optically forbidden'' 

transitions are of great importance for determination of physical constants in astrophysical plasma. 

Ionisation processes via autoionisation could be in many cases more important than the direct one. The 

contribution of core-excited autoionising states to the total ionisation cross section has been in detail 

examined theoretically by Kim and Stone, in particular for atoms of the IIIA group (boron, aluminium, 

gallium and indium) [20] and IVA group (silicon, germanium, tin and lead) [21] of the Periodic Table. 

They found that the core-excited autoionising states contribute significantly to the total ionisation 

cross sections for all the numbered atoms except for lead. 

In this paper we present relative DCS for electron impact excitation of the 6p
2

 7s 
4

P
1/2

 state in 

bismuth at electron impact energies of 40 and 60 eV. In addition, the analysis for the energy loss 

spectra below and above the first ionisation threshold (autoionisation) is given. The connections 

between our results and astrophysical measurements are discussed. In section 2, the apparatus is 

described and the experimental procedure is given. In section 3, results of relative DCS measurements 

and obtained energy-loss spectra are discussed and presented graphically. Finally, conclusions are 

formulated in section 4. 

2. The experiment and procedure 

Experimental arrangement used in our measurements is a conventional crossed-beam electron 

spectrometer described in our previous works [22,23]. The optics of both the monochromator and the 

analyser are very similar to the one designed by Chutjian [24]. The analyser can be positioned at 

angles from -30
o

 up to 150
o

 with respect to the direction of primary electron beam. The electron 

spectrometer itself can be operated in three different modes: recording of electron energy-loss spectra, 

scanning incident energy and direct angular distribution measuring of elastically and inelastically 

scattered electrons. The position of the real zero scattering angle was determined before each angular 

distribution measurement by checking the symmetry of the scattered electron signal at positive and 

negative angles, with respect to the un-scattered electron beam. The energy scale was calibrated 

against the 3s3p 
1

P
1
 excitation threshold of Mg at 4.345 eV. Using significantly improved energy 

resolution (50 meV), we did not find the shift of the energy scale due to contact potential difference 

between the thoriated tungsten filament (work function of Th 3.4 eV) and magnesium plated (3.66 eV) 

collision chamber. A channel electron multiplier is used for single-electron counting. The operating 

condition are summarised in table 2. 

 

Table 2. The experimental parameters used in our electron spectrometer 

Parameters Conditions 

Impact energy range (eV) 10-100 

Energy resolution (meV) 100-150 

Uncertainty in energy scale (meV) 300 

Angular resolution (
0

) 1.5 

Uncertainty in angular scale (
0

) 0.5 

Oven temperature (K) 1000 

Metal-vapour pressure (Pa) 10 

Oven nozzle aspect ratio (γ=d/L) 0.075 

Primary electron current (nA) 10-50 

Residual magnetic field in interaction  

region (double μ-metal shield) (μT)  

< 0.1 

Background pressure (mPa) < 5 
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The metal-vapour beam source consists of a stainless-steel crucible. The crucible is placed in a 

stainless-steel cylinder co-axially wrapped with two different resistive bifilar heaters (top and bottom, 

whose temperatures were monitored with two thermocouples), enabling the top of the source to be at 

approximately 100 K higher temperature than the bottom. This prevents clogging of the nozzle. An 

additional outer copper cylinder served as a holder for the helical tube of the water-cooler.  

In this work, relative DCSs for electron impact excitation of the 6p
2

 7s 
4

P
1/2

 state from the ground 

state of bismuth atom are obtained as follows. At a certain incident electron energy and energy-loss 

(ΔE), the position of the analyser was changed from 2
0

 to 150
0

 and the angular distribution of scattered 

electron was measured. The scattering intensity was corrected using the effective path-length 

correction factors according to the approach of Brinkman and Trajmar [25]. 

The contributions to the total uncertainties of the relative DCSs arise from statistical uncertainties, 

uncertainty from effective path-length correction factor (0.06), and estimation of the energy (0.01) and 

angular (0.10) scale. 

3. Result and discussion 

We have measured relative differential cross sections for electron-impact excitation of the 6p
2

7s 
4

P
1/2 

 

state of bismuth atom from the ground state at the incident impact energies of 40 and 60 eV and the 

scattering angle from 2
o

 to 150
o

. The relative DCSs with total uncertainties are presented graphically 

in figure 2. 

In order to compare in shape the presented DCS at 40 eV electron impact energy with DCS 

obtained by Williams and Trajmar [14] we normalised their DCS to present DCS at 10
o

. As one can 

see in figure 2 the agreement in shape is good up to 30
o

. At higher scattering angles our DCS have 

three maxima and two minima; while DCS obtained by Williams et al [14] monotonically decreases 

up to 90
o

 and after that monotonically increases. For the measured electron impact energy of 60 eV 

our DCSs show two minima, the first at 80
o

 and the second close to 140
o

. 
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Figure 2. Relative differential cross sections for electron-impact 

excitation of the 6p
2

7s 
4

P
1/2

 state of Bi at a) 40 and b) 60 eV 

electron-impact energies. ●, present; Δ, Williams and Trajmar [14] 

normalised at present at 10
o

; ○, absolute DCS for electron-impact 

excitation of the 6p7s 
3

P
0,1

 state in lead Milisavljević et al [26] 

normalised at present at 10
o
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Generally, present relative DCSs are very similar in shape to DCSs for the excitation of the 6p7s 

3

P
0,1

 state in lead atom measured by Milisavljević et al [26] (see figure 2b). Also, at 60 eV we observe 

DCSs similar in shape to DCSs for the excitation of the 6s6p 
1

P
1
 state of mercury obtained by 

Panajotović et al [27] (not presented here). 

We recorded energy-loss spectra at different scattering angles and electron impact energies. 

Marinković et al [22] presented in their study electron energy-loss spectra at 20 and 100 eV while here 

we present the energy-loss spectrum at the electron impact energy of 40 eV and scattering angle of 10
o

 

in the range of energy losses up to 13 eV (see figure 3). Within the literature on BiI the LS system is 

mostly employed, so we will retain this scheme in our discussion of level structures. Below the 6p
2

 
3

P
0
 

first ionisation limit (7.286 eV) of bismuth, Moore [28] listed 33 levels, which she assigned principally 

in the series 6p
2

ns 
2,4

P or 6p
2

nd 
2

D, with n ≤ 10. Some of these levels can be recognized in figure 3 and 

are listed in table 3. 
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Figure 3. Electron energy-loss spectrum of bismuth at 40 eV impact 

energy and scattering angle of 10
o

. The ionisation limits (IP) are 

indicated by vertical lines.  

 

The first detected bismuth lines in spectra of peculiar star 73 Dra at 472.2nm [7] correspond to the 

transitions between the 6p
3

 
2

D
3/2

 (1.416 eV) and 6p
2

7s 
4

P
1/2

 state (ΔE = 2.6247 eV). Both these states 

can be seen in figure 3. The search for lines from the BiI spectra of chemically peculiar stars was 

hampered by line blending and the paucity of strong BiI lines. Wahlgren et al [18] tested the presence 

of two intense lines (λ = 206.23 nm and λ = 227.73 nm) of BiI in spectra χ Lipi star. In order to test the 

existence of observable BiI lines, synthetic spectra were calculated for the solar abundance and a 5.0 

dex enhancement for the λ = 206.23 nm line using gf = 0.378 determined by Wiese and Martin [29] 

was used. A vary small difference in blended feature profile resulted from this large enhancement 

level, indicated that BiI lines in the χ Lipi would be noticeable. Nevertheless, none of the strongest BiI 

lines that were observed in absorption or arc spectra from laboratory measurements were located in the 

HR 7775 star. 

The spectrum shown in figure 3 contains well-resolved features that correspond to low-lying 

excited 
2

D
3/2

, 
2

D
1/2

 and 
2

P
3/2 

states (energy losses of 1.416 eV, 1.914 eV and 2.685 eV respectively) 

with the 6s
2

6p
3

 configuration. Due to the generally lower resolution in electron spectrometry the state 

6s
2

6p
3 

 
2

P
3/2

 is not visible. The presence of bismuth dimers could not be avoided. The three features at 
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2.20 eV, 3.97 eV and 4.52 eV correspond to the optically observed states of Bi
2
. The excited dimer 

states are labelled as B, C, and D according to Huber and Herzberg [30]. 

 

Table 3. Electron levels observed in electron energy-loss spectra of bismuth at 40 eV (θ = 10
o

). 

Source abbreviation: C, Clearman [3]; A, Assous[4]; M, Mathews et al [6]; Moo, Moore [28]. 

Line 

No 

Energy 

 (eV) 

Assignment Source  

of data 

This experiment 

(eV) 

1 7.348  C 7.34 

2 7.537 

7.539 

7.540 

7.540 

6p
2

(
3

P
1
)8s J=3/2 

6p
2

(
3

P
1
)8s 

4

P
3/2 

J=3/2 or 5/2 

6p
2

(
3

P
1
)8s J=3/2 

C 

A 

M 

Moo 

7.55 

3 7.621 

7.664 

7.579 

7.624 

6p
2

(
3

P
2
)6d 

6p
2

(
3

P
2
)6d 

4

F
3/2

 

- 

6p
2

(
3

P
2
)6d J=1/2 

C 

A 

M 

Moo 

7.62 

4 7.776 

7.777 

7.779 

6p
2

(
3

P
2
)6d 

6p
2

(
3

P
2
)6d 

4

D
3/2 

6p
2

(
3

P
2
)6d J=3/2 

C 

A 

Moo 

7.77 

5 7.914 

7.917 

7.902 

6p
2

(
3

P
1
)8s J=5/2 

Series B J=1/2 or 3/2 

6p
2

(
3

P
1
)8s J=1/2 

C 

M 

Moo 

7.89 

6 7.966 

8.051 

7.969 

7.969 

- 

6p
2

(
3

P
1
)7d  

J=1/2 or 3/2 

6p
2

(
3

P
1
)7d J=3/2  

C 

A 

M 

Moo 

7.98 

7 8.135 

8.135 

- 

6p
2

(
3

P
1
)9s 

2

P
1/2

 

M 

Moo 

8.16 

8 8.318 

8.246 

6p
2

(
1

D
2
)7s 

6p
2

(
3

P
1
)9p J=1/2 

C 

Mo 

8.27 

9 8.434 

8.346 

8.410 

6p
2

(
3

P
2
)7d  

- 

6p
2

(
3

P
1
)10s 

4

P
3/2 

C 

M 

Moo 

8.43 

10 8.634 

8.570 

Series B 

6p
2

(
3

P
1
)9s 

2

P
3/2

 

M 

Mo 

8.61 

11 8.875 

8.865 

Series B or D 

6p
2

(
3

P
1
)10s 

2

P
3/2

 

M 

Moo 

8.88 

12 9.094 

9.097 

9.097 

6p
2

(
3

P
2
)10p 

Series X 

6p
2

(
3

P
1
)10d J=1/2 

C 

M 

Moo 

9.09 

13 9.264 Series Y M 9.27 

14 - - - 9.97 

15 - - - 11.2 

 

Above the first ionisation limit we identified fifteen autoionising states. These states are listed in 

table 3. Eleven states are identified between the first and the second ionisation limits, two states 

between the second and the third and two between the third and the fourth. The assignment of the 

different series is adopted from [6] and in accordance with the two-limit multichannel quantum defect 

theory. The two states at 9.97 and 11.2 eV, which have not been observed previously in either 

photoabsorption or in arc spectra, lie in the energy range between the third and fourth ionisation limits 

of bismuth atom. The feature at 11.2 eV is very broad (about 0.9 eV half width at full maximum). 

4. Conclusion  

In this work we have presented relative DCSs for the electron-impact excitation of the 6p
2

7s 
4

P
1/2

 state 

in bismuth. To the best of our knowledge the differential cross sections at 60 eV are reported for the 

first time. The measured differential cross sections are very similar in shape to the cross sections 

obtained for the excitation of the 6p7s 
3

P
0,1

 state in lead. In the autoionising region we have identified 
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several energy levels up to the fifth ionisation limit. Not many of the BiI lines have been observed in 

spectra chemically peculiar stars with exception of the 472.2 nm line. In conclusion, our 

measurements show great similarity between bismuth and lead at least for electron-atom collisions 

processes which we studied. 
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