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Abstract. Calorons are finite action solutions to the anti-selfdual Yang-Mills equations on
R3 × S1. They are generally constructed by the so called Nahm construction. We perform the
numerical Nahm transform for the Nahm data of 3-calorons with C3-symmetry, which do not
have the monopole limits. Dissimilar to the cases of having monopole limits, we can trace the
zero-circumference limit of S1. It is found that the action density of the calorons tends to fade
away as S1 shrinks.

1. Introduction
Topological solitons in various field theories are vigorously studied in both analytically and
numerically [1]. In this paper, we consider the finite action solutions to anti-selfdual Yang-
Mills gauge theory in R3 × S1, usually called calorons [2]. As a topological soliton, calorons
have connection with many other related objects. In particular, they may have a non-trivial
holonomy around the S1-direction, which links them to Skyrmions [3]. And also, there exists a
picture of calorons in which monopoles constitute them [4, 5]. Finally, when the circumference
of S1 becomes large, then calorons will turn into instantons on R4. Hence the studies on calorons
will give insight into the universal understanding of topological solitons. The topological indices
of calorons are thus holonomy, monopole charges and instanton charges. Among them, the
holonomy and instanton charges do not take integer valued in general [6].

It is well known that calorons can be produced generally through the Nahm construction [7],
in which the dual space description of the gauge fields, called the Nahm data, plays central role.
In the construction, the transformation from the description on the dual space into that on the
ordinary configuration space is crucial, and called the Nahm transform. The Nahm transform
for SU(2) caloron of instanton charge k = 1 with non-trivial holonomy was studied analytically
in [8, 9]. For the higher charges, exact calorons of k = 2 were found in [10].

There are many studies for the numerical Nahm transform, e.g., [11, 12]. Recently, the 2-
caloron Nahm data of monopole charge (m1,m2) = (2, 2) of arbitrary mass with 16 moduli
parameters has been proposed [13]. The numerical Nahm transform for the 10 parameter subset
of the data has been done in [14]. In this paper we employ the scheme developed in [14], but we
make an essential refinement of it to be applicable for general cases.

As mentioned above, calorons are closely related to monopoles and instantons. In fact, the
Nahm data of calorons have usually the monopole, or the large scale, limits in addition to the
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instanton limits. In other words, most of the known Nahm data give examples of the picture
in which calorons interpolate between monopoles and instantons [15]. However, it is known
that the calorons from Corrigan-Fairlie-t’Hooft ansatz [16], i.e., the Harrington-Shepard type,
of higher instanton charges do not have the monopole limits [17]. In addition, it has been shown
that there is a one-parameter family of 3-calorons Nahm data with C3-symmetry which do not
have monopole limits [18, 19]. From these facts, it will be interesting to ask that under which
conditions the calorons have monopole limits. In this context, we consider the numerical Nahm
transform for the C3-symmetric 3-calorons and show the visualization of their action density.
Unlike the cases of having monopole limits, we can trace the zero-circumference limit of S1, i.e.,
the limit to R3. We find that the action density gradually tends to fade away as S1 becomes
smaller.

In this paper, we restrict the gauge group to SU(2) or U(2). In section 2, a brief review on
the Nahm construction is given for the case that the holonomy is trivial. In section 3, we give
the method of numerical Nahm transform. In section 4, the Nahm data of the C3-symmetric
3-calorons are introduced. In section 5, the visualization for the action density is performed for
the caloron Nahm data given in the previous section. The final section is devoted for summary
and concluding remarks.

2. Nahm construction
We give a review of the Nahm construction for the calorons of U(2) gauge theory with trivial
holonomy. Let xµ be the standard coordinates on R3 × S1, where the greek indices run 1, 2, 3
and 4.

Caloron Nahm data usually consists of two elements. The first is the bulk Nahm data, which
are four Hermitian k × k matrices Tµ(s) where the k ∈ Z+ is the instanton charge of calorons
and s ∈ [−µ0, µ0] is a dual space coordinate. Here µ0 determines the fundamental interval of the
dual space and the circumference of S1 is given by π/µ0. The boundary Nahm data is a k-row
vector W of quaternion entries. For the massless case, i.e., the case of the trivial holonomy, the
bulk Nahm and the boundary Nahm data satisfy, respectively,

d

ds
Ti −

i

2
εijm [Tj , Tm]− i [T4, Ti] = 0, (1)

Ti(−µ0)− Ti(µ0) =
1

2
tr2

(
σiW

†W
)
, (2)

where σi’s are the Pauli matrices, indecies i, j,m = 1, 2, 3 and the trace is taken over quaternions.
The caloron gauge fields in the ordinary, or the configuration, space are obtained from the

Nahm data through the zero modes of the Weyl equations with impurities at the boundaries.
The solutions of the Weyl equations are zero modes with two elements: the bulk zero modes are
2k-vectors ul and the boundary zero modes are 2-vectors vl, where l = 1, 2 indicates the two
basis of the solution space of the Weyl equations,(

12k
d

ds
− i(Tµ(s) + xµ1k)⊗ eµ

)
ul = 0, (3)

∆ul := ul(−µ0)− ul(µ0) = iW †vl. (4)

where eµ = (−iσi,12) are the basis of the quaternion. These are called the bulk Weyl equation
and the boundary Weyl equation, respectively. The next step is to find two independent pair of
the zero modes (u1,v1), (u2,v2), normalized as∫

I
u†
aubds+ v†

avb = δab, (5)
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where a, b = 1, 2 and I = [−µ0, µ0]. From these zero modes, we obtain the gauge connection of
calorons as (

Aµ(x)
)
ab

=

∫
I
u†
a∂µubds+ v†

a∂µvb. (6)

In the next section, we shall describe how to numerically solve the Weyl equations.

3. Numerical Nahm transform
In this section, we recast the scheme developed in [14], which is specialized to the case of
instanton charge k = 2, in order to carry out the numerical Nahm transform for the calorons
of higher instanton charge k ≥ 3. According to [14], we begin with finding the solutions to the
bulk Weyl equations (3), followed by solving the boundary Weyl equations (4) with use of a
degree of freedom of the linear combinations of the bulk solutions.

3.1. The bulk Weyl equations
The bulk Weyl equations for the charge k calorons are the system of linear ordinary differential
equations of rank 2k, and they can be numerically solved by standard procedure such as Runge-
Kutta method, etc..

First, we find out α independent solutions of the Weyl equations by numerically integrating
from one endpoint to the direction of another and also from the other to the first one. Thus we
obtain 2α numerical solutions ûi totally. Here α, the number of the independent solutions to
the bulk Weyl equations from one endpoint, is also equal to the number of shooting parameters
on each endpoints (s = ±µ0). We then fabricate two independent solutions ul for the Weyl
equations by taking linear combinations of these 2α solutions,

ul = (û1 û2 . . . û2α) · ωl, (7)

where ωl are 2α-column vectors, i.e. ωl :=
t(ω1

l ω
2
l . . . ω2α

l ), to be fixed as follows. For the
monopole construction [20], we impose that these solutions match at the center of the interval.
For the caloron, on the other hand, we determine them by the requirement that the bulk solutions
are consistent with the boundary Weyl equations (4).

3.2. The boundary Weyl equations
The boundary Weyl equations are given by

∆ul = iW †vl. ⇐⇒


∆u1l
∆u2l
...

∆u2kl

 = i


W †

1

W †
2
...

W †
k


(
v1l
v2l

)
. (8)

where W = (W1 W2 . . .Wk) , Wi ∈ H are the boundary Nahm data of k-caloron.
Although the coupled equations (8) look like an over-determined system for two unknowns

v1l and v2l, this is not the case because the left-hand-side are still unknown at the present stage.
Our goal is to obtain the coefficients of the linear combination ωl in (7) and the boundary zero
modes vl simultaneously from û1, û2, . . . , û2α. We can reduce the problem in the form of simple
linear algebra as will be shown below. The caloron Nahm data certainly induce α ≥ k, thus
without loss of generality, we choose α = k.
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If we solve just the upper two rows in (8), we can obtain the boundary zero modes vl(
v1l
v2l

)
= −iW † −1

1

(
∆u1l
∆u2l

)
=

−i

W1
1W2

2 −W1
2W2

1

(
W2

2∆u1l −W1
2∆u2l

−W2
1∆u1l +W1

1∆u2l

)
, (9)

where W i
j are the components of W † as a 2k × 2 matrix and we used the fact that, in general,

detW1 ̸= 0. Substituting (9) into the 2(k − 1) remaining equations in (8) (i.e., (8) without
upper two rows), we obtain 2(k − 1) conditions. We solve these restraint conditions by using
the degree of freedom of the linear combination of the bulk solutions.

From the definition (7), ∆ul is expanded as

∆ul := (∆û1 ∆û2 . . . ∆û2α) · ωl. (10)

where ∆ûi := ûi(−µ0)− ûi(µ0). From (9) and (10), the remaining equations of (8) turn out to
be, ∆u3l

...
∆u2kl

 = i

W †
2
...

W †
k

 −i

W1
1W2

2 −W1
2W2

1

(
W2

2∆u1l −W1
2∆u2l

−W2
1∆u1l +W1

1∆u2l

)
,

⇐⇒


W †

2
...

W †
k

(
W2

2∆û1j −W1
2∆û2j

−W2
1∆û1j +W1

1∆û2j

)
− det(W †

1 )

∆û3j
...

∆û2j


ω j

l = 0, j = 1, 2, . . . , 2α,

⇐⇒
[
W i

mγmn
opWo

n∆ûpj − det(W †
1 )∆ûij

]
︸ ︷︷ ︸

=:Ai
j

ω j
l = 0, i = 3, 4, . . . , 2k, and m,n, o, p = 1, 2,

(11)

where ω j
l are the components of ωl and γmn

op are tensor defined as,

γmn
op :=

{
0 m = n

1 m ̸= n
×

{
+1 n = o

−1 n ̸= o
×

{
0 o = p

1 o ̸= p
.

In (11), we define (2k − 2) × 2α matrix A with components Ai
j . We can regard (11) as linear

homogeneous equation for ωl, which determine the basis of the solutions to the bulk Weyl
equations. In order to find a basis for the 2-dimensional kernel of A, we perform standard Gauss
elimination. Having obtained the independent ωl, we take the linear combination (7), and find
the components of ul automatically satisfy the boundary Weyl equations (8). The solutions of
the boundary Weyl equations vl have already been given by (9).

Finally we notice that the numerical Nahm transform for the calorons in this process is known
to cause a singularity lines for the action density [14]. The origin of the singularity lines are
the gap of the zero modes, and we can eliminate the singularity lines using the appropriate
procedure, which will be given in a forthcoming paper.
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4. Nahm data of the C3-symmetric 3-caloron
The bulk Nahm data of the 3-caloron with C3-symmetry are given by [18],

T1 =
1

2

 0 f+ − if− f0
f+ + if− 0 f+ − if−

f0 f+ + if− 0

 , (12a)

T2 =
1

2

 f0 −f+ − if− 0
−f+ + if− 0 f+ + if−

0 f+ − if− −f0

 , (12b)

T3 =
1

4

 −p2 0 i(p0 − p1)
0 2p2 0

−i(p0 − p1) 0 −p2

 , (12c)

where f± := (f1 ± f2) /2, and fj , pj (j = 0, 1, 2) are defined by Jacobi theta functions
ϑν(s, q) (0 < q < 1) [22],

f0(s) := iC

√
ϑν(s1)ϑν(s2)

ϑν(s0)
, f1(s) := iC

√
ϑν(s2)ϑν(s0)

ϑν(s1)
,

f2(s) := iC

√
ϑν(s0)ϑν(s1)

ϑν(s2)
, (13)

and

p0(s) :=
d

ds
log

ϑν(s0)

ϑν(s2)
, p1(s) :=

d

ds
log

ϑν(s1)

ϑν(s0)
,

p2(s) :=
d

ds
log

ϑν(s2)

ϑν(s1)
. (14)

In the expression, we omit the explicit q dependence for simplicity. For the hermiticity of the
bulk data, the index of the theta functions have to be ν = 0 or 3, and the constant is chosen
such that C := ϑ′

1(0)/ϑ1(1/3) ∈ iR. In addition, we fix sj := ±s + j/3 for the periodicity
fj+3 = fj and pj+3 = pj due to ϑν(sj+3) = ϑν(sj). We also find that the bulk data enjoy the
reality conditions Ti(−s) = tT (s). Note that the C3-symmetry is not manifest in this basis of
the bulk data [18].

Next we consider the boundary data W . The boundary data in the charge 3 case are given
by 3-row vector of quatenion entries

W = (λ, ρ, χ) . (15)

From the matching conditions (2) and using the bulk data (12), we obtain the C3-symmetric
boundary data,

λ = iλ1 (σ1 + σ2) , ρ = − 2

λ1
g(µ0)12,

χ = −iλ1 (σ1 − σ2) , (16)

where g(µ0) := −f−(µ0) and λ1 is a real parameter constrained by 2λ2
1 = h(µ0) > 0 with the

definition

h(µ0) := −1

2
(p0(µ0)− p1(µ0)) . (17)
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Note that the constraint gives a restriction on the bulk data

p0(µ0)− p1(µ0) < 0. (18)

Taking into account the constraint, we find that the C3-symmetric 3-caloron has one free
parameter q.

For the calorons having monopole limit, e.g., [14, 17], the bulk Nahm data are regular on the
fundamental period, say, s ∈ (−ℓ/2, ℓ/2), and have simple poles at s = ±ℓ/2 where the residues
span an irreducible representation of su(2). Hence, µ0 takes values in the range (0, ℓ/2). In other
words, it has upper bound which corresponds to the monopole limit. For the C3-symmetric 3-
calorons considering here, however, the Nahm data is regular in s ∈ R, and consequently, µ0

will take values from zero to infinity.
In order to satisfy the condition (18), the acceptable theta function depends on the value

of µ0. Introducing the term “sector”, which is open interval Mn := (n/2, (n + 1)/2) for each
n ∈ Z≥0, we find

ϑν :=

{
ϑ3, for µ0 ∈ M2n,

ϑ0, for µ0 ∈ M2n+1.
(19)

Now the sign of the argument of the theta function is arbitrary chosen as sj = ±s+ j/3. From
the profile of the bulk Nahm data, we find h(n/2) = g(n/2) = 0, n ∈ Z≥0. This leads all of the
components of the boundary data W is zero, and the boundary zero mode is not well-defined
at the boundary of the sectors, µ0 = n/2. Consequently, when µ0 = n/2, the C3-symmetric
3-caloron Nahm data is not well-defined.

5. The action density
In order to get further insight of the solutions, it is surely worthwhile to visualize the action
density, which of course is gauge invariant and positive definite. From the ASD conditions
∗Fµν = ±Fµν , where ∗ is the Hodge dual on R4, the action density S of calorons can be written
as

S(xi, t) := −1

2
tr2F

2
µν = −2tr2

(
F 2
12 + F 2

23 + F 2
31

)
. (20)

Here the field strength tensor is defined as Fµν := ∂µAν − ∂νAµ + [Aµ, Aν ]. Thanks to the ASD
conditions, we do not have to calculate the t = x4 derivative in the field strength so that we can
regard t as a parameter in the calculation.

In the following, we fix t = x4 = 0. We employ 151 grid points for the dual space, and
71 × 71 × 71 lattice points for the configuration space, which are sufficient for the numerical
convergence. We perform the visualization of the action density mainly by Mathematica [21].

As mentioned in the previous section, the Nahm data of C3-symmetric 3-caloron has a notable,
special feature; the period of the dual space µ0 takes values in (0, ∞) except for the isolated
points n/2, n ∈ Z≥0. Thus it will be interesting when we plot the action density for the cases
of large period. Since our main concern is to clarify the behavior for the change of µ0, we plot
the action densities for fixed q.

5.1. The first two sectors: M0,M1

In Fig.1, we present the action isosurface plots for values of µ0 ∈ M0 = (0.0, 0.5), M1 =
(0.5, 1.0). For the sector M0, we use ϑ3, while for the sector M1 we use ϑ0, according to (19).
One can manifestly see that all the densities exhibit C3-symmetry. As was already pointed out,
the Nahm data are not well-defined at µ0 = 0.5, and 1.0. We find that the action isosurface
gradually shrinks as µ0 increases and finally disappears at µ0 = 0.5. After passing µ0 = 0.5, it
appears again and grows, and repeatedly it reduces and finally vanishes at µ0 = 1.0. Note that
in the figure of µ0 = 0.0, we use the value µ0 = 0.0000000001 instead of µ0 being exactly zero,
because we cannot perform the numerical calculation for the case.
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Figure 1. Action isosurface plot of the cyclic 3-caloron with q = 0.1, S(xi, t) = 7.0, t = 0.0
and xi ∈ (−2.0, 2.0) respectively. Note that the plots µ0 = 0.50 and 1.00 are actually the cases
of µ0 = 0.4999999999999999 and µ0 = 0.999999999999999, respectively. Because the boundary
Nahm data is not well-defined at exactly µ0 = 0.50 and 1.00. Also, the plot µ0 = 0.00 is the
case µ0 = 0.0000000001.

5.2. The “exterior” sectors: Mn (n ≥ 2)
In Figs.2 and 3, we present the isosurface plots of the action density for larger values of µ0 with
fixed q as 0.3 and 0.5. From these plots, we see a periodic behavior of the isosurfaces with fixed
µ0(/∈ M0) and µ0 + n, (n = 1, 2, · · · ), namely, the similarity of the plots in the horizontal rows.
However, the calculation for µ0 > 1.0 shows that the action densities are reducing gradually
as n increases. We expect the action density tends to vanish for µ0 → ∞, which corresponds
to the case R3 × S1 → R3 in the configuration space. The detail of this point will be given in
elsewhere.

6. conclusion
In this paper, we have constructed a general scheme for numerical Nahm transform of calorons
with arbitrary instanton charge. As a first application, we have performed the Nahm transform
of the C3-symmetric 3-calorons and found the quasi-periodic behavior of the action density as
µ0 varies. The bulk Nahm data are given by Jacobi theta functions ϑ3 and ϑ0 sector by sector.

Although µ0, the inverse of the circumference of S1, can take almost all positive values, the
half-integer values µ0 = n/2, n ∈ Z≥0 are excluded due to the ill-definition of the Nahm data.
In particular, the case µ0 = 0.0, corresponding to the instanton on R4, is also eliminated from
the consideration. At this point, we need complete understanding to the relation with the exact
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Figure 2. Action isosurface plot with q = 0.3, S(xi, t) = 7.0 t = 0.0 and xi ∈ (−2.0, 2.0),
respectively.

ADHM data of C3-symmetric instanton obtained in [18]. We expect to report the subject in
next articles.
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