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Abstract. In the present article we discuss the classification of quantum groups whose quasi-
classical limit is a given simple complex Lie algebra g. This problem reduces to the classification
of all Lie bialgebra structures on g(K), where K = C((~)). The associated classical double is of
the form g(K)⊗K A, where A is one of the following: K[ε], where ε2 = 0, K⊕K or K[j], where
j2 = ~. The first case relates to quasi-Frobenius Lie algebras. In the second and third cases
we introduce a theory of Belavin–Drinfeld cohomology associated to any non-skewsymmetric
r-matrix from the Belavin–Drinfeld list [1]. We prove a one-to-one correspondence between
gauge equivalence classes of Lie bialgebra structures on g(K) and cohomology classes (in case
II) and twisted cohomology classes (in case III) associated to any non-skewsymmetric r-matrix.
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1. Introduction
Let k be a field of characteristic 0. According to [3], a quantized universal enveloping algebra (or
a quantum group) is a topologically free topological Hopf algebra H over the formal power series
ring k[[~]] such that H/~H is isomorphic to the universal enveloping algebra of a Lie algebra g
over k.

The quasi-classical limit of a quantum group is a Lie bialgebra. By definition, a Lie bialgebra
is a Lie algebra g together with a cobracket δ which is compatible with the Lie bracket. Given a
quantum group H, with comultiplication ∆, the quasi-classical limit of H is the Lie bialgebra g of
primitive elements of H/~H and the cobracket is the restriction of the map (∆−∆21)/~(mod~)
to g.

The operation of taking the semiclassical limit is a functor SC : QUE → LBA between
categories of quantum groups and Lie bialgebras over k. The quantization problem raised by
Drinfeld aims at finding a quantization functor, i.e. a functor Q : LBA→ QUE such that SC◦Q
is isomorphic to the identity. Moreover, a quantization functor is required to be universal, in the
sense of props.

The existence of universal quantization functors was proved by Etingof and Kazhdan [5, 6].
They used Drinfeld’s theory of associators to construct quantization functors for any field k of
characteristic zero. Drinfeld introduced the notion of associator in relation to the theory of quasi-
triangular quasi-Hopf algebras and showed that associators exist over any field k of characteristic
zero. Etingof and Kazhdan proved that for any fixed associator over k one can construct a
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universal quantization functor. More precisely, let (g, δ) be a Lie bialgebra over k. Then one
can associate a Lie bialgebra g~ over k[[~]] defined as (g ⊗k k[[~]], ~δ). According to Theorem
2.1 of [6] there exists an equivalence Q̂ between the category LBA0(k[[~]]) of topologically free
over k[[~]] Lie bialgebras with δ = 0(mod~) and the category HA0(k[[~]]) of topologically free
Hopf algebras cocommutative modulo ~. Moreover, for any (g, δ) over k, one has the following:
Q̂(g~) = U~(g).

The aim of the present article is the classification of quantum groups whose quasi-classical
limit is a given simple complex Lie algebra g. Due to the equivalence between HA0(C[[~]]) and
LBA0(C[[~]]), this problem is equivalent to classification of Lie bialgebra structures on g⊗CC[[~]].
For simplicity, denote O := C[[~]], K := C((~)), g(O) := g⊗C O and g(K) := g⊗C K.

On the other hand, in order to classify cobrackets on g(O) it is enough to classify cobrackets
on g(K). Indeed, if δ is a Lie bialgebra structure on g(O), then it can be naturally extended
to g(K). Conversely, given a Lie bialgebra structure δ̄ on g(K), then by multiplying δ̄ by an
appropriate power of ~, the restriction of δ̄ to g(O) is a Lie bialgebra structure on g(O).

Now, from the general theory of Lie bialgebras it is known that for each Lie bialgebra structure
δ on a fixed Lie algebra L one can construct the corresponding classical double D(L, δ) which is
the vector space L⊕L∗ together with a bracket which is induced by the bracket and cobracket of
L, and a non-degenerate invariant bilinear form, see [4]. We consider L = g(K) and prove Prop.
2.1 which states that there exists an associative, unital, commutative algebra A, of dimension 2
over K, such that D(g(K), δ) ∼= g(K)⊗KA. In Prop. 2.3 we show that there are three possibilities
for A: A = K[ε], where ε2 = 0, A = K⊕K or A = K[j], where j2 = ~.

Due to the correspondence Lie bialgebras–Manin triples, to any Lie bialgebra structure δ on
L one can associate a certain Lagrangian subalgebra W of D(L, δ) which is complementary to
L and conversely, any such W produces a Lie cobracket on L. The main problem is to obtain a
classification of all such subalgebras W for the three choices of A as above. We investigate each
choice of A separately.

For A = K[ε], where ε2 = 0, it turns out that the classification problem is related to that of
quasi-Frobenius Lie subalgebras over K.

In case A = K ⊕ K, we introduce Belavin–Drinfeld cohomologies. Namely, for any
non-skewsymmetric constant r-matrix rBD from the Belavin–Drinfeld list [1], we associate a
cohomology set H1

BD(rBD). We prove that there exists a one-to-one correspondence between
any Belavin–Drinfeld cohomology and gauge equivalence classes of Lie bialgebra structures on
g(K). We first consider g = sl(n) and show that all cohomologies are trivial. We then discuss
the case of orthogonal algebras g = o(n), where it turns out that the cohomology associated
to the Drinfeld–Jimbo r-matrix is also trivial. We illustrate an example where the cohomology
corresponding to another non-skewsymmetric constant r-matrix for o(2n) is non-trivial.

We finally treat the case A = K[j], where j2 = ~. We restrict our analysis to g = sl(n) and we
show that in this case a cohomology theory can be introduced too. Our result states that there
exists a one-to-one correspondence between Belavin–Drinfeld twisted cohomology and gauge
equivalence classes of Lie bialgebra structures on g(K). We prove that the twisted cohomology
corresponding to the Drinfeld–Jimbo r-matrix is trivial.

In the last section of the article we formulate a conjecture stating that the Belavin–Drinfeld
cohomology associated to the Drinfeld–Jimbo r-matrix is trivial for any simple complex Lie
algebra g. We also define the quantum Belavin–Drinfeld cohomology and formulate a second
conjecture about the existence of a natural correspondence between classical and quantum
cohomologies.

2. Lie bialgebra structures on g(K)
Let g be a simple complex finite-dimensional Lie algebra. Consider the Lie algebras g(O) = g⊗CO
and g(K) = g⊗C K.
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We have seen that the classification of quantum groups with quasi-classical limit g is equivalent
to the classification of all Lie bialgebra structures on g(O). Moreover, as explained in the
introduction, in order to classify Lie bialgebra structures on g(O), it is enough to classify them
on g(K).

Let us assume that δ̄ is a Lie bialgebra structure on g(K). This cobracket endows the dual of
g(K) with a Lie bracket. Then one can construct the corresponding classical double D(g(K), δ̄).
As a vector space, D(g(K), δ̄) = g(K) ⊕ g(K)∗. As a Lie algebra, it is endowed with a bracket
which is induced by the bracket and cobracket of g(K). Moreover the canonical symmetric
non-degenerate bilinear form on this space is invariant.

Similarly to Lemma 2.1 from [8], one can prove that D(g(K), δ̄) is a direct sum of regular
adjoint g-modules. Combining this result with Prop. 2.2 from [2], one obtains the following

Proposition 2.1. There exists an associative, unital, commutative algebra A, of dimension 2
over K, such that D(g(K), δ̄) ∼= g(K)⊗K A.

Remark 2.2. The symmetric invariant non-degenerate bilinear form Q on g(K)⊗K A is given in
the following way. For arbitrary elements f1, f2 ∈ g(K) and a, b ∈ A we have Q(f1⊗ a, f2⊗ b) =
K(f1, f2) · t(ab), where K denotes the Killing form on g(K) and t : A −→ K is a trace function.

Let us investigate the algebra A. Since A is unital and of dimension 2 over K, one can
choose a basis {e, 1}, where 1 denotes the unit. Moreover, there exist p and q in K such that
e2 + pe+ q = 0. Let ∆ = p2 − 4q ∈ K. We distinguish the following cases:

(i) Assume ∆ = 0. Let ε := e+
p

2
. Then ε2 = 0 and A = Kε⊕K = K[ε].

(ii) Assume ∆ 6= 0 and has even order as an element of K. This implies that ∆ =
~2m(a0 + a1~ + a2~2 + ...), where m is an integer, ai are complex coefficients and a0 6= 0.

One can easily check that the equation x2 = a0 + a1~ + a2~2 + ... has two solutions
±x = x0 + x1~ + x2~2 + ... in O.

Then e = −p
2
± ~mx

2
, which implies that e ∈ K and A = K⊕K.

(iii) Assume ∆ 6= 0 and has odd order as an element of K. We have ∆ = ~2m+1(a0 + a1~ +
a2~2 + ...), where m is an integer, ai are complex coefficients and a0 6= 0.

Again the equation x2 = a0 + a1~ + a2~2 + ... has two solutions ±x = x0 + x1~ + x2~2 + ...
in O. Since a0 6= 0, we have x0 6= 0 and thus x is invertible in O.

Let j = ~−m(2e + p)x−1. Then e2 + pe + q = 0 is equivalent to j2 = ~. Since A = Ke ⊕ K
and 2e = ~mxj − p, A = Kj ⊕K.

We have thus obtained the following result.

Proposition 2.3. Let δ̄ be an arbitrary Lie bialgebra structure on g(K). Then D(g(K), δ̄) ∼=
g(K)⊗K A, where A = K[ε] and ε2 = 0, A = K⊕K or A = K[j] and j2 = ~.

On the other hand, it is well-known, see for instance [3], that there is a one-to-one
correspondence between Lie bialgebra structures on a Lie algebra L and Manin triples
(D(L), L,W ). For L = g(K), this fact implies the following

Proposition 2.4. There exists a one-to-one correspondence between Lie bialgebra structures on
g(K) for which the classical double is g(K) ⊗K A and Lagrangian subalgebras W of g(K) ⊗K A,
with respect to the non-degenerate bilinear form Q, and transversal to g(K).

Corollary 2.5. (i) There exists a one-to-one correspondence between Lie bialgebra structures on
g(K) for which the classical double is g(K[ε]), ε2 = 0, and Lagrangian subalgebras W of g(K[ε]),
and transversal to g(K).

(ii) There exists a one-to-one correspondence between Lie bialgebra structures on g(K) for
which the classical double is g(K) ⊕ g(K) and Lagrangian subalgebras W of g(K) ⊕ g(K), and
transversal to g(K), embedded diagonally into g(K)⊕ g(K).
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(iii) There exists a one-to-one correspondence between Lie bialgebra structures on g(K) for
which the classical double is g(K[j]), where j2 = ~, and Lagrangian subalgebras W of g(K[j]),
and transversal to g(K).

3. Lie bialgebra structures in Case I
Here we study the Lie bialgebra structures δ on g(K) for which the corresponding Drinfeld double
is isomorphic to g(K[ε]), ε2 = 0. The problem is to find all subalgebras W of g(K[ε]) satisfying
the following conditions:

(i) W ⊕ g(K) = g(K[ε]).
(ii) W = W⊥, with respect to the following non-degenerate symmetric bilinear form:

Q(f1(~) + εf2(~), g1(~) + εg2(~)) = K(f1, g2) +K(f2, g1).

Proposition 3.1. Any subalgebra W of g(K[ε]) satisfying conditions (i) and (ii) from above is
uniquely defined by a subalgebra L of g(K) together with a non-degenerate 2-cocycle B on L.

Proof. The proof is similar to that of Th. 3.2 and Cor. 3.3 from [10].

Remark 3.2. We recall that a Lie algebra is called quasi-Frobenius if there exists a non-degenerate
2-cocycle on it. It is called Frobenius if the corresponding 2-cocycle is a coboundary. Thus we
see that the classification problem for the Lagrangian subalgebras we are interested in contains
the classification of Frobenius subalgebras of g(K). This question is quite complicated, as it
is known from studying Frobenius subalgebras of g. However, for g = sl(2) there is only one
Frobenius subalgebra, the standard parabolic one.

4. Lie bialgebra structures in Case II and Belavin-Drinfeld cohomologies
Our task is to classify Lie bialgebra structures on g(K) for which the associated classical double
is isomorphic to g(K)⊕ g(K).

Lemma 4.1. Any Lie bialgebra structure δ on g(K) for which the associated classical double is
isomorphic to g(K)⊕ g(K) is a coboundary δ = dr given by an r-matrix satisfying r+ r21 = fΩ,
where f ∈ K∗ and CYB(r) = 0.

We may suppose that f = 1. Naturally, we want to classify all such r up to Ad(G(K))-
equivalence. Here Ad(G(K)) is a group, which acts naturally on g(K).

Let K denote the algebraic closure of K. Any Lie bialgebra structure δ over K can be extended
to a Lie bialgebra structure δ over K.

According to [1], Lie bialgebra structures on a simple Lie algebra over an algebraically closed
field are coboundaries given by non-skewsymmetric r-matrices. These r-matrices have been
classified up to Ad(G)-equivalence and they are given in terms of admissible triples.

Let us fix a Cartan subalgebra h of g and the associated root system. We choose a system
of generators eα, e−α, hα such that K(eα, e−α) = 1, for any positive root α. Denote by Ω0 the
Cartan part of Ω. Suppose also that H ⊂ Ad(G) is a Cartan subgoup with Lie algebra h.

Let us recall from [1, 3] that any non-skewsymmetric r-matrix depends on certain discrete
and continuous parameters. The discrete one is an admissible triple (Γ1,Γ2, τ), i.e. an isometry
τ : Γ1 −→ Γ2 where Γ1,Γ2 ⊂ Γ such that for any α ∈ Γ1 there exists k ∈ N satisfying
τk(α) /∈ Γ1. The continuous parameter is a tensor r0 ∈ h ⊗ h satisfying r0 + r21

0 = Ω0 and
(τ(α)⊗1+1⊗α)(r0) = 0 for any α ∈ Γ1. Then the associated r-matrix is given by the following
formula

rBD = r0 +
∑
α>0

eα ⊗ e−α +
∑

α∈(SpanΓ1)+

∑
k∈N

eα ∧ e−τk(α).
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Now, let us consider an r-matrix corresponding to a Lie bialgebra on g(K). Up to Ad(G(K))-
equivalence, we have the Belavin–Drinfeld classification. We may assume that our r-matrix is of
the form rX = (AdX ⊗ AdX)(rBD), where X ∈ G(K) and rBD satisfies the system r + r21 = Ω
and CYB(r) = 0. The corresponding bialgebra structure is δ(a) = [rX , a ⊗ 1 + 1 ⊗ a] for any
a ∈ g(K).

Let us take an arbitrary σ ∈ Gal(K/K). Then we have (σ⊗ σ)(δ(a)) = [σ(rX), a⊗ 1 + 1⊗ a]
and (σ⊗σ)(δ(a)) = δ(a), which imply that σ(rX) = rX +λΩ, for some λ ∈ K. Let us show that
λ = 0. Indeed, Ω = σ(Ω) = σ(rX) + σ(r21

X ) = rX + r21
X + 2λΩ. Thus λ = 0 and σ(rX) = rX .

Consequently, we get (AdX−1σ(X) ⊗AdX−1σ(X))(σ(rBD)) = rBD. We recall the following

Definition 4.2. Let r be an r-matrix. The centralizer C(r) of r is the set of all X ∈ G(K)
satisfying (AdX ⊗AdX)(r) = r.

Theorem 4.3. Let rBD be an r-matrix from the Belavin–Drinfeld list for g(K). Suppose that
(AdX−1σ(X) ⊗AdX−1σ(X))(σ(rBD)) = rBD. Then σ(rBD) = rBD and X−1σ(X) ∈ C(rBD).

Proof. Consider r = rBD which corresponds to an admissible triple (Γ1,Γ2, τ) and r0 ∈ h ⊗ h.
Denote Y := X−1σ(X) and s := r − r0. Then (Ad(Y )⊗Ad(Y ))(s+ σ(r0)) = s+ r0.

Following [7], p. 43–47, let F (r) : g −→ g be the operator defined by F (r)(x) = r′K(r′′, x), if
r =

∑
r′ ⊗ r′′ and K is the Killing form on g. Let

gλr =
⋃
n>0

Ker(F (r)− λ)n.

Then
g = g0

r ⊕ g′r ⊕ g1
r ,

where
g′r =

⊕
λ6=0,1

gλr .

In our case, n− ⊆ g0
s+r0 ⊆ b−, n+ ⊆ g1

s+r0 ⊆ b+, g′s+r0 ⊆ h, g0
s+r0+g′s+r0 = b−, g1

s+r0+g′s+r0 = b+,
and similarly for s+ σ(r0). It can be easily checked that

F (Ad(Y )⊗Ad(Y ))(r) = Ad(Y ) ◦ F (r) ◦Ad(Y −1).

Hence Ad(Y )(g0,1
s+σ(r0)) = g0,1

s+r0 and Ad(Y )(g′s+σ(r0)) = g′s+r0 . Therefore Ad(Y )(b±) = b± and
Ad(Y ) ∈ Ad(H)(K). Let us analyse the equality

Ad(Y )⊗Ad(Y )(s+ σ(r0)) = s+ r0.

It follows that
Ad(Y )⊗Ad(Y )(s) + σ(r0) = s+ r0.

Taking into account that r0, σ(r0) ∈ H⊗2 and

(Ad(Y )⊗Ad(Y ))(s) =
∑
α>0

eα ⊗ e−α +
∑

β∈(ZΓ1)+

∑
n>0

kβ,neβ ∧ e−τn(β),

for some integers kβ,n, we deduce that σ(r0) = r0. Thus σ(r) = r and Ad(Y ) ∈ C(r).

In conclusion, rX = (AdX ⊗AdX)(rBD) induces a Lie bialgebra structure on g(K) if and only
if X ∈ G(K) satisfies the condition X−1σ(X) ∈ C(rBD), for any σ ∈ Gal(K/K).
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Definition 4.4. Let rBD be a non-skewsymmetric r-matrix from the Belavin–Drinfeld list and
C(rBD) its centralizer. We say that X ∈ G(K) is a Belavin–Drinfeld cocycle associated to rBD
if X−1σ(X) ∈ C(rBD), for any σ ∈ Gal(K/K).

We denote the set of Belavin–Drinfeld cocycles associated to rBD by Z(rBD). This set is
non-empty, always contains the identity.

Definition 4.5. Two cocyclesX1 andX2 in Z(rBD) are called equivalent if there existsQ ∈ G(K)
and C ∈ C(rBD) such that X1 = QX2C.

Definition 4.6. Let H1
BD(rBD) denote the set of equivalence classes of cocycles from Z(rBD).

We call this set the Belavin–Drinfeld cohomology associated to the r-matrix rBD. The Belavin–
Drinfeld cohomology is said to be trivial if all cocycles are equivalent to the identity, and non-
trivial otherwise.

We make the following remarks:
Remark 4.7. Assume that X ∈ Z(rBD). Then for any σ ∈ Gal(K/K), σ(X) = XC, for
some C ∈ C(rBD). We get (Adσ(X) ⊗ Adσ(X))(rBD) = (AdX ⊗ AdX)(rBD). Consequently,
(AdX ⊗AdX)(rBD) induces a Lie bialgebra structure on g(K).
Remark 4.8. Assume that X1 and X2 in Z(rBD) are equivalent. Then X1 = QX2C, for some
Q ∈ G(K) and C ∈ C(rBD). This implies that (AdX1 ⊗AdX1)(rBD) = (AdQX2 ⊗AdQX2)(rBD).
In other words, the r-matrices (AdX1⊗AdX1)(rBD) and (AdX2⊗AdX2)(rBD) are gauge equivalent
over K via an element Q ∈ G(K).

The above remarks imply the following result.

Proposition 4.9. Let rBD be a non-skewsymmetric r-matrix over K. There exists a one-to-one
correspondence between H1

BD(rBD) and gauge equivalence classes of Lie bialgebra structures on
g(K) with classical double g(K)⊕ g(K) and K-isomorphic to δ(rBD).

5. Belavin-Drinfeld cohomologies for sl(n)
Our next goal is to compute H1

BD(rBD) for g = sl(n). We will first analyse the cohomology
associated to the Drinfeld–Jimbo r-matrix rDJ .

Lemma 5.1. Let X ∈ GL(n,K). Assume that for any σ ∈ Gal(K/K), X−1σ(X) ∈ diag(n,K).
Then there exist Q ∈ GL(n,K) and D ∈ diag(n,K) such that X = QD.

Proof. Let σ ∈ Gal(K/K) and σ(X) = XDσ, where Dσ = diag(d1, ...dn). Here di depend on σ.
Then σ(xij) = xijdj , for any i, j.

On the other hand, in each column of X there exists a nonzero element. Let us denote these
elements by xi11, ..., xinn. For j = 1, σ(xi1) = xi1d1 and σ(xi11) = xi11d1. These relations imply
that σ(xi1/xi11) = xi1/xi11 for any σ ∈ Gal(K/K) and thus xi1/xi11 ∈ K, for any i.

Similarly, xi2/xi22 ∈ K,..., xin/xinn ∈ K, for any i. Let Q = (kij) be the matrix whose
elements are kij = xij/xijj , for any i and j.

Thus X = QD, where Q ∈ GL(n,K) and D = diag(xi11, ..., xinn).

Proposition 5.2. For g = sl(n), the Belavin–Drinfeld cohomology H1
BD(rDJ) associated to rDJ

and to the group GL(n) is trivial.

Proof. It easily follows from the proof of Theorem 4.3 that the center of rDJ is C(rDJ , GL(n)) =
diag(n,K). Let us show that any cocycle is equivalent to the identity. Indeed, let X = (xij) be
a cocycle from Z(rDJ), i.e. X−1σ(X) ∈ C(rDJ), for any σ ∈ Gal(K/K).

It follows that X−1σ(X) ∈ diag(n,K). According to Lemma 5.1, there exists Q ∈ GL(n,K)
and D ∈ diag(n,K) such that X = QD. This proves that X is equivalent to the identity.
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It turns out that the above result is true not only for rDJ . Given an arbitrary r-matrix rBD
from the Belavin–Drinfeld list, the corresponding cohomology is also trivial. First we will take
a closer look to the centralizer C(rBD) of an r-matrix rBD. Due to Theorem 4.3, the following
result holds.

Lemma 5.3. Let rBD be an arbitrary r-matrix from the Belavin–Drinfeld list. Then

C(rBD) ⊆ diag(n,K).

Remark 5.4. The above result is not true for o(2n) if we consider O(2n) as the gauge group.
However, one can easily show that in this case C(rDJ , O(2n)) contains all diagonal matrices of
O(2n) (we will describe our presentation of O(n) in Section 6).

For sl(n) we are now able to give the exact description of C(rBD).

Lemma 5.5. C(rBD) consists of all diagonal matrices T = diag(t1, ..., tn), such that ti =
sisi+1...sn, where si ∈ K satisfy the condition: si = sj if αi ∈ Γ1 and τ(αi) = αj.

Proof. Let us assume that rBD is associated to an admissible triple (Γ1,Γ2, τ), where Γ1,Γ2 ⊂
{α1, ..., αn−1}. Let T ∈ C(rBD). According to Lemma 5.3, T ∈ diag(n,K), therefore we put
T = diag(t1, ..., tn). Now we note that T ∈ C(rBD) if and only if (AdT ⊗ AdT )(eτk(α) ∧ e−α) =
eτk(α) ∧ e−α for any α ∈ Γ1 and any positive integer k.

For simplicity, let us take an arbitrary αi ∈ Γ1 and suppose that τ(αi) = αj . We then get
tit
−1
i+1 = tjt

−1
j+1. Denote sj := tjt

−1
j+1 for each j ≤ n − 1 and sn = tn. Then tj = sjsj+1...sn and

moreover si = sj .

Theorem 5.6. For g = sl(n), the Belavin–Drinfeld cohomology associated to any rBD is trivial.
Any Lie bialgebra structure on g(K) is of the form δ(a) = [r, a⊗1+1⊗a], where r is an r-matrix
which is GL(n,K)–equivalent to a non-skewsymmetric r-matrix from the Belavin–Drinfeld list.

Proof. Let X be a cocycle associated to rBD which is a fixed r-matrix from the Belavin–Drinfeld
list. Thus X−1σ(X) belongs to the centralizer of the rBD. On the other hand, according to
Lemma 5.3, C(rBD) ⊆ diag(n,K).

We then obtain that for any σ ∈ Gal(K/K), X−1σ(X) is diagonal. By Lemma 5.1, we have
a decomposition X = QD, where Q ∈ GL(n,K) and D ∈ diag(K). Since σ(Q) = Q, we have
X−1σ(X) = (QD)−1σ(QD) = D−1Q−1Qσ(D) = D−1σ(D). Recall that X−1σ(X) ∈ C(rBD).
It follows that D−1σ(D) ∈ C(rBD).

Let D = diag(d1, ..., dn). Then diag(d−1
1 σ(d1), ..., d−1

n σ(dn)) ∈ C(rBD). Denote ti = d−1
i σ(di)

and T = diag(t1, ..., tn). According to Lemma 5.5, T ∈ C(rBD) if and only if tit−1
i+1 = tjt

−1
j+1.

Equivalently, σ(d−1
i di+1djd

−1
j+1) = d−1

i di+1djd
−1
j+1. It follows that d−1

i di+1djd
−1
j+1 ∈ K. Let

si := did
−1
i+1 for any i and sn = dn. Then we get sjs−1

i ∈ K.
Let us fix a root αi0 ∈ Γ1 \ Γ2 and let τ j(αi0) = αj . Then sjs

−1
i0
∈ K, for any j. Denote

kj := sjs
−1
i0

. We have dj = sjsj+1...sn−1sn = kjkj+1...kns
n−j+1
i0

. Let

K := diag(k1k2...kn, k2...kn, ..., kn), C := diag(sni0 , s
n−1
i0

, ..., si0).

Note that D = KC and K ∈ GL(n,K). Moreover, according to Lemma 5.5, C ∈ C(rBD).
Summing up, we have obtained that if X is any cocycle associated to rBD, then X = QD =

QKC, with QK ∈ GL(n,K), C ∈ C(rBD). This ends the proof.
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6. Belavin-Drinfeld cohomologies for orthogonal algebras
The next step in our investigation of Belavin–Drinfeld cohomologies is for orthogonal algebras
o(m). We begin with the case of Drinfeld–Jimbo r-matrix. In what follows, we will use the
following split form of the orthogonal algebra o(n,C) and o(n,K):

o(n) = {A ∈ gl(n) : ATS + SA = 0}.

Here S is the matrix with 1 on the second diagonal and zero elsewhere. The group

O(n) = {X ∈ GL(n) : XTSX = S}

naturally acts on o(n). However, the center of the Drinfeld–Jimbo r-matrix might be bigger
than the Cartan subalgebra of O(n). On the other hand, it follows from Theorem 4.3 that
C(rDJ , SO(n)) coincides with the Cartan subgroup of SO(n). Our main result about Belavin-
Drinfeld cohomologies for orthogonal algebras is the following:

Theorem 6.1. Let g = o(m) and rDJ be the Drinfeld–Jimbo r-matrix. Then H1
BD(rDJ , SO(m))

is trivial. Moreover, if m is odd then both H1
BD(rDJ , O(m)) and H1

BD(rDJ , SO(m)) are trivial.

Proof. (i) Assume m = 2n. On Km let us fix the bilinear form

B(x,y) =
m∑
i=1

xiym+1−i.

Let X ∈ O(m,K) be a cocycle associated to rDJ . Thus X−1σ(X) ∈ C(rDJ). Recall that
C(rDJ) = diag(m,K) ∩ SO(m,K). Therefore X−1σ(X) ∈ diag(m,K). By Lemma 5.1, one
has the decomposition X = QD, where Q ∈ GL(m,K) and D ∈ diag(m,K). Let us write
D = diag(d1, ..., d2n) and denote by qi the columns of Q. Then X = QD is equivalent to
QTSQ = D−1SD−1, which in turn gives that B(qi, qi′)didi′ = δ2n+1−i′

i . We get B(qi, qi′) = 0 if
i+ i′ 6= 2n+ 1 and B(qi, q2n+1−i)did2n+1−i = 1. Let ki := B(qi, q2n+1−i). Since Q ∈ GL(2n,K),
ki ∈ K. Because k−1

i = did2n+1−i, it follows that D = Q1D1, where

Q1 = diag(k−1
1 , ..., k−1

n , 1..., 1) and

D1 = diag(d1k1, ..., dnkn, dn+1, ..., d2n).

We note that X = (QQ1)D1, D1 ∈ SO(2n) and hence, D1 ∈ C(rDJ , SO(2n)). Then, clearly
QQ1 ∈ SO(2n,K). which proves that X is equivalent to the identity.

(ii) Assume m = 2n + 1. First, we note that if X ∈ O(m) is such that det(X) = −1, then
det(−X) = 1. Therefore, it follows from Theorem 4.3 that in this case C(rDJ , O(2n+1)) consists
of diagonal matrices. By Lemma 5.1, we may write again X = QD, where Q ∈ GL(n,K) and
D ∈ diag(m,K).

Let ki := B(qi, q2n+2−i) ∈ K. Repeating the computations as in (i), one gets k−1
i = did2n+2−i.

If i = n+ 1, d2
n+1 = k−1

n+1 ∈ K. This implies that either dn+1 ∈ K or dn+1 ∈ jK, where j2 = ~.
Actually we can prove that the second case is impossible.
Let us denote R = Q−1 and its rows by r1,...,r2n+1. Then XTSX = S is equivalent to

RSRT = DSD, which in turn gives the following: B(ri, ri′) = 0, for all i 6= i′, B(ri, ri) =
did2n+2−i for all i.

Let us take an arbitrary orthogonal basis v1,...,v2n+1 in K2n+1 and denote B(vi, vi) = Ai.
The matrix V with rows vi satisfies V SV T = diag(A1, ..., A2n+1). This relation implies that

A1...A2n+1 = (−1)ndet(V )2 = (indet(V ))2. Therefore A1...A2n+1 = l2 is a square of some l ∈ K.
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On the other hand, if M is the change of basis matrix from ri to vi, then

MTdiag(A1, ..., A2n+1)M = diag(d1d2n+1, ..., d
2
n+1, ..., d2n+1d1).

By taking the determinant on both sides, one obtains

det(M)2A1...A2n+1 = (d1d2n+1)2...(dndn+2)2d2
n+1

which implies that d2
n+1 is a square in K, and consequently, dn+1 ∈ K.

Let us show that X is equivalent to the trivial cocycle. Consider

Q1 = diag(k−1
1 , ..., k−1

n , dn+1, 1, ..., 1)

D1 = diag(d1k1, ..., dnkn, 1, dn+2..., d2n+1).

We have D = Q1D1 and D1 ∈ O(2n + 1,K). Thus X = (QQ1)D1, QQ1 ∈ O(2n + 1,K),
D1 ∈ C(rDJ), i.e. X is equivalent to the trivial cocycle, which completes the proof of triviality
of H1

BD(rDJ , O(m)).
Finally, the case H1

BD(rDJ , SO(2n+ 1)) can be treated exactly as H1
BD(rDJ , SO(2n)).

We have just seen that the Belavin–Drinfeld cohomology H1
BD(rDJ) is trivial. Regarding

Belavin–Drinfeld cohomology H1
BD(rBD, SO(2n)) for an arbitrary rBD, we can give an example

where this set is non-trivial. Let us denote the simple roots of o(2n) by αi = εi− εi+1, for i < n,
αn = εn−1 + εn, where {εi} is an orthonormal basis of h∗. Let Γ1 = {αn−1}, Γ2 = {αn} and
τ(αn−1) = αn. Denote by rBD the r-matrix corresponding to the triple (Γ1,Γ2, τ) and s, where
s ∈ h ∧ h satisfies ((αn−1 − αn))⊗ 1)(2s) = ((αn−1 + αn))⊗ 1)Ω0.
Lemma 6.2. The centralizer C(rBD) consists of all diagonal matrices of the form

T = diag(t1, ..., tn−1,±1,±1, t−1
n−1, ..., t

−1
1 ),

for arbitrary nonzero t1, t2 ∈ K.

Proof. We already know that C(rBD, SO(2n)) ⊆ diag(2n,K)∩O(2n,K). Let T ∈ C(rBD), where
T = diag(t1, ..., tn, t

−1
n , ..., t−1

1 ). Since T commutes with r0 and rDJ , T ∈ C(rBD) if and only
if (AdT ⊗ AdT )(eαn ∧ eαn−1) = eαn ∧ eαn−1 . One can check that (AdT ⊗ AdT )(eαn ∧ eαn−1) =
t−2
n eαn ∧ eαn−1 . Therefore we get t−2

n = 1 and the conclusion follows.

Proposition 6.3. Let g = o(2n) and rBD be the r-matrix corresponding to the triple (Γ1,Γ2, τ)
and s ∈ h ∧ h as above. Then H1

BD(rBD, SO(2n)) is non-trivial.

Proof. Assume that X−1σ(X) ∈ C(rBD, SO(2n)) for all σ ∈ Gal(K/K). By the above lemma,
X−1σ(X) = diag(t1, ..., tn−1,±1,±1, t−1

n−1, ..., t
−1
1 ).

On the other hand, since X−1σ(X) is diagonal, it follows from Theorem 6.1 that there
exist Q ∈ SO(2n,K) and a diagonal matrix D ∈ SO(2n,K) such that X = QD. Let
D = diag(s1, ..., sn, s

−1
n , ..., s−1

1 ). Since Q ∈ O(2n,K), for any σ ∈ Gal(K/K), σ(Q) = Q. We
obtain X−1σ(X) = D−1Q−1Qσ(D) = D−1σ(D), which is equivalent to the following system:
s−1
i σ(si) = ti, for all i ≤ n− 1 and s−1

n σ(sn) = ±1.
Assume first that there exists σ such that σ(sn) = −sn. Then sn ∈ jK. One can check that

X is equivalent to X0 = diag(1, ..., 1, j, j−1, 1, ..., 1) which is a non-trivial cocycle.
If σ(sn) = sn for all σ ∈ Gal(K/K), then sn ∈ K. In this case,

D = diag(s1, ..., sn−1, 1, 1, s
−1
n−1, ..., s

−1
1 )× diag(1, ..., 1, sn, s

−1
n , 1, ..., 1),

where the first matrix is in C(rBD) and the second in SO(2n,K). This proves thatX is equivalent
to the identity cocycle.
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7. Lie bialgebra structures in Case III and twisted Belavin-Drinfeld cohomologies
Here we analyse the Lie bialgebra structures on g(K) for which the corresponding Drinfeld double
is isomorphic to g(K[j]), where j2 = ~. The question is to find those subalgebras W of g(K[j])
satisfying the following conditions:

(i) W ⊕ g(K) = g(K[j]).
(ii) W = W⊥, with respect to the non-degenerate symmetric bilinear form Q given by

Q(f1(~) + jf2(~), g1(~) + jg2(~)) = K(f1, g2) +K(f2, g1).

We will restrict our discussion to g = sl(n). We begin with the following remark. The
field K[j] is endowed with a conjugation. For any element a = f1 + jf2, its conjugate is
a := f1 − jf2. If A = A1 + jB1 and B = A2 + jB2 are two matrices in sl(n,K[j]), then
Q(A,B) = Tr(A1B2 +B1A2), i.e. the coefficient of j in Tr(AB).

Lemma 7.1. Let L be the subalgebra of sl(n,K[j]) which consists of all matrices Z = (zik)
satisfying zik = zn+1−i,n+1−k. Then L and sl(n,K) are isomorphic via a conjugation of
sl(n,K[j]).

Proof. Assume that Z = (zik) satisfies zik = zn+1−i,n+1−k. Then Z = SZS, where S is the
matrix with 1 on the second diagonal and zero elsewhere.

Choose a matrix X ∈ GL(n,K[j]) such that X = XS. Then XZX−1 = XSZSX−1 =
XZX−1 which implies that XZX−1 ∈ sl(n,K). Conversely, if A ∈ sl(n,K), then Z = X−1AX
satisfies the condition Z = SZS.

From now on we will identify sl(n,K) with L. Let us find a complementary subalgebra to
L in sl(n,K[j]). Let us denote by H the Cartan subalgebra of L. If we identify the Cartan
subalgebra of sl(n,K[j]) with K2(n−1), then H is a Lagrangian subspace of K2(n−1). Choose a
Lagrangian subspace H0 of K2(n−1) such that H0 has trivial intersection with H . Let N+ be the
algebra of upper triangular matrices of sl(n,K[j]) with zero diagonal. Consider W0 = H0⊕N+.
We immediately obtain the following

Lemma 7.2. The subalgebra W0 as above satisfies conditions (i) and (ii), where sl(n,K) is
identified with L as in Lemma 7.1.

Proposition 7.3. Any Lie bialgebra structure on sl(n,K) for which the classical double is
isomorphic to sl(n,K[j]) is given by an r-matrix which satisfies CY B(r) = 0 and r + r21 = jΩ.

Proof. Let W0 be as in the above lemma. By choosing two dual bases in W0 and sl(n,K)
respectively, one can construct the corresponding r-matrix r0 over K. It is easily seen that r0

satisfies the system CY B(r0) = 0 and r0 + r21
0 = jΩ.

Let us suppose that W is another subalgebra of sl(n,K[j]), satisfying conditions (i) and (ii).
Then the corresponding r-matrix over K is obtained by choosing dual bases in W and sl(n,K)
respectively. We have r+ r21 = aΩ for some a ∈ K[j]. On the other hand, the classical double of
the Lie bialgebras corresponding to r and r0 is the same. This implies that r and r0 are twists
of each other and therefore a = j.

Now, we recall that, over K, all r-matrices are gauge equivalent to the ones from Belavin–
Drinfeld list. It follows that there exists a non-skewsymmetric r-matrix rBD and X ∈ GL(n,K)
such that r = j(AdX ⊗AdX)(rBD).

Consider an arbitrary σ ∈ Gal(K/K). Since δ is a cobracket on sl(n,K), (σ⊗σ)(δ(a)) = δ(a)
and (σ ⊗ σ)(δ(a)) = [σ(r), a⊗ 1 + 1⊗ a].

At this point it is worth recalling that Gal(K/K) ∼= Ẑ = lim←−(Z/nZ) (see [9]). Clearly, the
subgroup 2Ẑ acts trivially on K[j]. Assume that σ ∈ 2Ẑ. Exactly as in section 4, it follows that
σ(r) = r and if r = (AdX ⊗AdX)(jrBD) with X ∈ GL(n,K), then σ(X) = XD(σ).
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Since Gal(K/K[j]) ∼= 2Ẑ ∼= Ẑ, we can use the same arguments as in the proof of Lemma 5.1
to obtain the following result

Lemma 7.4. Let X ∈ GL(n,K). Assume that for any σ ∈ Gal(K/K[j]), X−1σ(X) ∈ diag(n,K).
Then there exists P ∈ GL(n,K[j]) and D ∈ diag(n,K) such that X = PD.

Now let us consider the action of σ2 ∈ Gal(K[j]/K), σ2(a + bj) = a − bj := a+ bj. Our
identities imply that σ2(r) = r + αΩ, for some α ∈ K. Let us show that α = −j. Indeed, since
r+r21 = jΩ, we also have σ2(r)+σ2(r21) = −jΩ. Combining these relations with σ2(r) = r+αΩ,
we get α = −j and therefore σ2(r) = r − jΩ = −r21.

Recall now that r = j(AdX ⊗ AdX)(rBD). It follows that X ∈ GL(n,K) must satisfy the
identity (AdX−1σ2(X)⊗AdX−1σ2(X))(σ(rBD)) = r21

BD. Using the same arguments as in the proof
of Theorem 4.3, we obtain

Proposition 7.5. Any Lie bialgebra structure on sl(n,K) for which the classical double is
sl(n,K[j]) is given by an r-matrix r = j(AdX ⊗AdX)(rBD), where rBD is a non-skewsymmetric
r-matrix from the Belavin–Drinfeld list and X ∈ GL(n,K) satisfies

(AdX−1σ2(X) ⊗AdX−1σ2(X))(rBD) = r21
BD

(AdX−1σ(X) ⊗AdX−1σ(X))(rBD) = rBD,

for any σ ∈ Gal(K/K[j]),

Definition 7.6. Let rBD be a non-skewsymmetric r-matrix from the Belavin–Drinfeld list.
We call X ∈ G(K) a Belavin–Drinfeld twisted cocycle associated to rBD if (AdX−1σ2(X) ⊗
AdX−1σ2(X))(rBD) = r21

BD and (AdX−1σ(X)⊗AdX−1σ(X))(rBD) = rBD, for any σ ∈ Gal(K/K[j]).

The set of Belavin–Drinfeld twisted cocycle associated to rBD will be denoted by Z(rBD).
Now, let us restrict ourselves to the case rBD = rDJ . In order to continue our investigation,

let us prove the following

Lemma 7.7. Let S be the matrix with 1 on the second diagonal and zero elsewhere. Then

r21
DJ = (AdS ⊗AdS)rDJ .

Proof. We recall that rDJ is given by the following formula:

rDJ =
∑
α>0

eα ⊗ e−α +
1

2
Ω0.

First note that (AdS ⊗ AdS)(eij ⊗ eji) = en+1−i,n+1−j ⊗ en+1−j,n+1−i, which is a term in r21
DJ ,

if i > j. On the other hand, since Ω0 is the Cartan part of the invariant element Ω, we get
(AdS⊗AdS)Ω0 = Ω0. This could also be proved by using the identity Ω0 = n

∑n
i=1 eii⊗eii−I⊗I,

where I denotes the identity matrix of GL(n,K). Then r21
DJ = (AdS ⊗AdS)rDJ holds.

Remark 7.8. Z(rDJ) is non-empty. Indeed, choose X ∈ GL(n,K[j]) such that σ2(X) = XS.
Then X ∈ Z(rDJ).

Corollary 7.9. Let X be a Belavin–Drinfeld twisted cocycle associated to rDJ . Then X = PD,
where P ∈ GL(n,K[j]) and D ∈ diag(n,K). Moreover, σ2(P ) = PSD1, where D1 ∈
diag(n,K[j]).
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Proof. Since X is a twisted cocycle, for any σ ∈ Gal(K/K[j]), X−1σ(X) ∈ C(rDJ). Recall
that C(rDJ) = diag(n,K). By Lemma 7.4, we have X = PD, where P ∈ GL(n,K[j]) and
D ∈ diag(n,K). Lemma 7.7 implies that D2 := S−1X−1σ2(X) ∈ diag(n,K).

Since S−1D−1P−1σ2(P )σ2(D) = D2, we obtain P−1σ2(P ) = DSD2σ2(D−1).
LetD1 := S−1DSD2σ2(D−1) ∈ diag(n,K). Then σ2(P ) = PSD1 andD1 ∈ diag(n,K[j]).

Definition 7.10. Let X1 and X2 be two Belavin–Drinfeld twisted cocycles associated to rDJ .
We say that they are equivalent if there exists Q ∈ GL(n,K) and D ∈ diag(n,K) such that
X1 = QX2D.

Remark 7.11. Assume that X is a twisted cocycle associated to rDJ . By Corollary 7.9, X = PD
and is equivalent to the twisted cocycle P ∈ GL(n,K[j]).

Definition 7.12. Let H1
BD(rDJ) denote the set of equivalence classes of twisted cocycles

associated to rDJ . We call this set the Belavin–Drinfeld twisted cohomology associated to the
r-matrix rDJ .

Remark 7.13. If X1 and X2 are equivalent twisted cocycles, then the corresponding r-matrices
r1 = j(AdX1 ⊗ AdX1)(rDJ) and r2 = j(AdX2 ⊗ AdX2)(rDJ) are gauge equivalent via Q ∈
GL(n,K).

Proposition 7.14. There is a one-to-one correspondence between H
1
BD(rDJ) and gauge

equivalence classes of Lie bialgebra structures on sl(n,K) with classical double sl(n,K[j]) and
K-isomorphic to δ(rDJ).

Let m = [n+1
2 ]. Denote by J the matrix with elements akk = 1, for k ≤ m, akk = −j for

k ≥ m+ 1, ak,n−k+1 = 1, for k ≤ m and ak,n−k+1 = j for k ≥ m+ 1.

Theorem 7.15. For g = sl(n), the Belavin–Drinfeld twisted cohomology H
1
BD(rDJ) is non-

empty and consists of one element, the class of J .

Proof. Let X be a twisted cocycle associated to rDJ . By Remark 7.11, X is equivalent to
a twisted cocycle P ∈ GL(n,K[j]), associated to rDJ . We may therefore assume from the
beginning that X ∈ GL(n,K[j]). We will prove that X and J are equivalent, i.e. X = QJD′,
for some Q ∈ GL(n,K) and D′ ∈ diag(n,K[j]). The proof will be done by induction.

For n = 2, consider J =

(
1 1
j −j

)
. Suppose X =

(
a b
c d

)
∈ GL(2,K[j]) satisfies

X = XSD with D = diag(d1, d2) ∈ GL(2,K[j]). The identity is equivalent to the following
system: a = bd1, b = ad2, c = dd1, d = cd2. Assume that cd 6= 0. Let a/c = a′ + b′j. Then

b/d = a′ − b′j. One can immediately check that X = QJD′, where Q =

(
a′ b′

1 0

)
∈ GL(2,K),

D′ = diag(c, d) ∈ diag(2,K[j]).

For n = 3, consider J =

 1 0 1
0 1 0
j 0 −j

 and let X = (aij) ∈ GL(3,K[j]) satisfy X = XSD,

with D = diag(d1, d2, d3) ∈ GL(3,K[j]). The identity is equivalent to the following system:
a11 = d1a13, a21 = d1a23, a31 = d1a33, a12 = d2a12, a22 = d2a22, a32 = d2a32, a13 = d3a11,
a23 = d3a21, a33 = d3a31. Assume that a21a22a23 6= 0.

Let a11/a21 = b11 + b13j and a31/a21 = b31 + b33j. Then a13/a23 = b11 − b13j and
a33/a23 = b31 − b33j. On the other hand, let b12 := a12/a22 and b32 := a32/a22. Note that
b12 ∈ K, b32 ∈ K. One can immediately check that X = QJD′, where

Q =

 b11 b12 b13

1 1 0
b31 b32 b33

 ∈ GL(3,K), D′ = diag(a21, a22, a23) ∈ diag(3,K[j]).
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For n > 3, we proceed by induction. Let us denote our matrix J ∈ GL(n,K[j]) by Jn. We are
going to prove that if X ∈ GL(n,K[j]) satisfies X = XSD, then using elementary row operations
with entries from F and multiplying columns by proper elements from K[j] we can bring X to
Jn.

We will need the following operations on a matrix

M = {mpq} ∈ Mat(n) :

1. un(M) = {mpq, p, q = 2, 3, ..., n− 1} ∈ Mat(n− 2);
2. gn(M) = {mpq} ∈ Mat(n + 2), where mpq are already defined for p, q = 1, 2, ...n,

m00 = mn+1,n+1 = 1 and the rest m0,a = ma,0 = mn+1,a = ma,n+1 = 0.

It is clear that un(X) satisfies the twisted cocycle condition. However, its determinant
might vanish. To avoid this complication, we note that columns 2, 3, ..., n − 1 of X are linearly
independent. Applying elementary row operations (in fact, they are permutations) we obtain a
new cocycle X1, which is equivalent to X and such that un(X1) is a cocycle in GL(n− 2,K[j]).
Then, by induction, there exist Qn−2 ∈ GL(n− 2,K) and a diagonal matrix Dn−2 such that

Qn−2 · un(X1) ·Dn−2 = Jn−2.

Let us consider Xn = gn−2(Qn−2) ·X1 · gn−2(Dn−2). Clearly, Xn is a twisted cocycle equivalent
to X and un(Xn) = Jn−2.

Applying elementary row operations with entries from K and multiplying by a proper diagonal
matrix, we can obtain a new cocycle Yn = (ypg) equivalent to X with the following properties:

1. un(Yn) = Jn−2;
2. y12 = y13 = ... = y1,n−1 = 0 and yn2 = yn3 = ... = yn,n−1 = 0;
3. y11 = y1n = 1, here we use the fact that if ypq = 0, then yp,n+1−q = 0.
It follows from the cocycle condition Yn = Yn ·S ·diag(h1, ..., hn) that h1 = hn = 1 and hence,

yn1 = ynn.
Now, we can use the first row to achieve yn1 = −ynn = j and after that, we use the first

and the last rows to annihilate {yk1, k = 2, ..., n− 1}. Then the set {ykn, k = 2, ..., n− 1} will
automatically vanish. We have obtained Jn from X and thus, have proved that X is equivalent
to Jn.

Example 7.16. For g = sl(2), the Belavin–Drinfeld list of non-skewsymmetric constant r-
matrices consists of only one class, rDJ = e⊗f+ 1

4h⊗h, where e = e12, f = e21 and h = e11−e22.
One can easily determine the corresponding class of gauge equivalent Lie bialgebra structures on
sl(2,K) with classical double sl(2,K[j]) and K-isomorphic to δ(rDJ). Indeed, since any twisted
cocycle is equivalent to J , it follows that a class representative is δ0 = dr0, where

r0 = j(AdJ ⊗AdJ)rDJ .

A straightforward computation gives

r0 =
jΩ

2
+

1

4
h ∧ e+

~
4
f ∧ h.

We conclude that any Lie bialgebra structure on sl(2,K) with classical double sl(2,K[j]) is gauge
equivalent to that given by dr0, multiplied by a constant from K.
Remark 7.17. In case sl(2), it follows that rDJ and r0, multiplied by some constants of K, provide
all gauge non-equivalent Lie bialgebra structures on sl(2,K) of types II and III and, consequently,
two families of non-isomorphic Hopf algebra structures on U(sl(2,C))[[~]]. Moreover, in some
sense, these two structures exhaust all Hopf algebra structures on U(sl(2,C))[[~]] with a non-
trivial Drinfeld associator (see also conjectures below).
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Remark 7.18. The next step would be to compute the Belavin–Drinfeld twisted cohomology
corresponding to an arbitrary r-matrix rBD. Unlike untwisted cohomology, it might happen
that even Z(rBD) is empty as we will see in next publications.

8. Conjectures
8.1. Belavin–Drinfeld cohomology conjecture
Let g be a simple Lie algebra and G = Ad(g) be the corresponding adjoint group, which is the
connected component of the group unit element modulo its center. Let C(rBD) be the subgroup
of elements of G(K) which act trivially on rBD.

Definition 8.1. We say that X ∈ G(K) is a Belavin–Drinfeld cocycle associated to rBD if
X−1σ(X) ∈ C(K, rBD), for any σ ∈ Gal(K/K).

Definition 8.2. Two Belavin–Drinfeld cocycles X1 and X2 are equivalent if X1 = QX2C, where
Q ∈ G(K) and C ∈ C(rBD).

Let us denote the set of equivalence classes by H1
BD(rBD, G).

Conjecture 8.3. Let g be a simple Lie algebra and rDJ the Drinfeld–Jimbo r-matrix. Then
H1
BD(rDJ , G) is trivial.

Remark 8.4. We have already proved the conjecture for sl(n) and o(n).

8.2. Quantization conjecture
Let L be a finite dimensional Lie algebra over C and δ a Lie bialgebra structure on L(K) such
that δ = 0(mod~). Let (U~(L),∆~) be the corresponding quantum group. Let G(K) = Ad(L(K))
and G(K) = Ad(L(K)).

Let us define the centralizer C(K, δ). Consider the classical double D(L(K), δ). Clearly, δ can
be extended to a Lie bialgebra structure δ on L(K) and D(L(K), δ) contains D(L(K), δ), more
precisely D(L(K), δ) = D(L(K), δ)⊗K K. The universal classical r-matrix rδ =

∑
ei ⊗ ei is the

same for D(L(K), δ) and D(L(K), δ).

Definition 8.5. The centralizer C(K, δ) consists of all X ∈ G(K) such that

(AdX ⊗Ad∗X)(rδ) = rδ + αΩ,

where Ω is an invariant element of D(L(K), δ)⊗2 and Ad∗ is the coadjoint representation on
(L(K))∗. Equivalently, (AdX ⊗AdX)δ(Ad−1

X (l)) = δ(l), for any l ∈ L.

Definition 8.6. We say that X ∈ G(K) is a Belavin–Drinfeld cocycle associated to δ if
σ(X) = XC, where C ∈ C(K, δ).

Two cocycles, associated to δ, X1 and X2 are equivalent if X1 = QX2C, where Q ∈ G(K) and
C ∈ C(K, δ).

The set of equivalence classes will be denoted by H1
BD(G, δ).

Now let us define quantum Belavin–Drinfeld cohomology. The quantum group (U~(L),∆~) is
defined over O = C[[~]]. We extend the Hopf structures of U~(L) to U~(L,K) = U~(L)⊗OK and
U~(L,K) = U~(L)⊗K K. By abuse of notation, ∆~ denotes all three comultiplications.

Definition 8.7. Let P be an invertible element of U~(L,K). We say that it belongs to
C(U~(L),∆~) if, for all a ∈ U~(L),

(P ⊗ P )∆~(P−1aP )(P−1 ⊗ P−1) = ∆~(a).

Denote FP := (P ⊗ P )∆~(P−1) ∈ U~(L,K)⊗2.
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Definition 8.8. P is called a quantum Belavin–Drinfeld cocycle if σ(P ) = PC, for any
σ ∈ Gal(K/K) and some C ∈ C(U~(L),∆~).

Two quantum cocycles P1 and P2 are equivalent if P2 = QP1C where Q is an invertible
element of U~(L,K) and C ∈ C(U~(L),∆~).

Remark 8.9. On U~(L) consider the comultiplications

∆~,P1(a) = FP1∆~(a)F−1
P1
, ∆~,P2(a) = FP2∆~(a)F−1

P2
.

Clearly,
∆~,P2(a) = (Q⊗Q)∆~,P1(Q−1aQ) · (Q−1 ⊗Q−1).

Since Q ∈ U~(L(K)), it is natural to call ∆~,P1 and ∆~,P2 K–equivalent comultiplications.
The set of equivalence classes of quantum Belavin–Drinfeld cocycles will be denoted by

H1
q−BD(∆~).

Conjecture 8.10. There is a natural correspondence between H1
BD(G, δ) and H1

q−BD(∆~).
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