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Abstract. We discuss a novel theoretical approach which explains the self-organization of
charged particles in a disk geometry. It allows to calculate readily equilibrium configurations for
n ≤ 400 with a remarkable accuracy, when compared with the molecular dynamics calculations.

1. Introduction
There is an enormous interest in mesoscopic systems consisting of a finite number of interacting
particles in confined geometry [1, 2]. Progress in a modern technology allows to study various
phenomena on the same scale, from Bose condensate with thousand atoms to quantum dots with
a few electrons, providing a rich information about correlation effects in such systems. Nowadays
many ideas and concepts introduced, for example, in condensed matter are realized and analysed
with a high accuracy. In particular, long ago Wigner predicted for electrons interacting by means
of the Coulomb forces in a three-dimensional space the onset of crystallization at low enough
densities and temperatures [3]. At these conditions the potential energy dominates over the
kinetic energy and defines the equilibrium configurations of electron systems. Indeed, signatures
of the Wigner crystallization were observed in two-dimensional (2D) distributions of electrons
on the surface of liquid helium [4].

Nowadays the question how a finite number of charged particles arrange themselves in a
restricted planar geometry attracts many researches. J.J. Thompson was among first who
suggested an instructive solution for interacting electrons, reducing the 3D harmonic oscillator
confinement potential to a circular (2D) harmonic oscilator [5]. He developed an analytical
approach which enables to one to trace a self-organization of a small number of electrons in a
family of rings (shells) with specific numbers of electrons. Although the number of particles in
outer and inner rings are changing as a function of the total number of electrons, each shell
is characterised by a certain discrete symmetry. Namely, N point charges located on the ring
create equidistant nodes on the ring, with the angle α = 2π/N . Similar shell pattern have been
found much later by means of Monte–Carlo (MC) calculations for charged particles (ions and
electrons) confined by a 2D parabolic [6, 7] and by a hard wall potentials [8, 9] for small and large
systems. Structures of polygonal patterns, similar to ones obtained in the effective harmonic
oscillator confinement, have been observed in experimental measurements [10, 11]. Note, that
in many cases, the polygonal pattern of equally charge particles is sufficiently regular.
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The purpose of this contribution is to discuss a semi-analytical approach for analysis of ground
state properties of charged particles in a disk as a function of particle number. We consider
particles interacting by means of the Coulomb interaction at zero temperature in order to avoid
the admixture of metastable states to the ground state. We will illuminate specific properties
which distinguish the electronic configurations in the circular potential from the parabolic one.

2. Coulomb nteraction of rings
The Coulomb energy of n unit charges e forming a regular polygon [ring] has the following form
[5]:

En(R) =
nSn e

2

4R
, Sn =

n−1∑
k=1

1

sin π
nk

. (1)

Evidently, one needs to know the interaction between rings. As it was shown in [12], the
interaction between two rings with n and m charges is determined as:

Enm(r1, r2, ψ) =

n∑
i=1

m∑
j=1

ε(r1, r2, ψ
nm
ij + ψ) = G×

L∑
k=1

ε(r1, r2, ψk + ψ) , (2)

ε(r1, r2, θ) = (r2
1 + r2

2 − 2 r1 r2 cos θ)−1/2 , (3)

where ψnmij = 2π(i/n − j/m), ψ is the relative angular offset between the two rings. Here,
{ψk = ∆ × k, k = 1, . . . , L}; L ≡ LCM(n,m) and G ≡ GCD(n,m) = n × m/L are the least
common multiple and greatest common divisor of the of numbers (n,m), respectively. The
energy is a periodic function with a ∆ = 2π/L periodicity. In turn, this result shows that these
kind of functions are invariant under angle transformations corresponding to the cyclic group of
L elements.

Let us denote r(R) = min(max)(r1, r2). Employing the expansion ε(1, x, ψ) =
Σl≥0x

l Pl(cosψ), we obtain

Enm = 〈Enm〉+ ∆Emn, (4)

∆Emn = R−1 (nm)
∞∑
k=1

Hk(r/R) (r/R)k×L cos (k × Lψ) (5)

Here, a zero order harmonic term is defined as

〈Enm〉 ≡ 〈Enm(r1, r2)〉 =
2nmK(4 r1 r2/(r1 + r2)2) e2

π R
=

2nmK((r/R)2) e2

πR
, (6)

and

Hk(x) = hk,L 2F1(1
2 ,

1
2 + k × L, 1 + k × L; x2), (7)

hk,L = [2k×L (k × L)!]−1 2 (2 k L− 1)!! . (8)

Since r/R < 1, it is enough to consider only a leading term in the sum (5)

∆Emn ≈
nm

R
H1(r/R) (r/R)L cos(Lψ), H1(r/R) ≈ h1,L (9)
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3. Equilibrium configurations
The total energy is defined as

Etot(n, r, ψ) =

p∑
i=1

Eni +

p∑
i=2

i−1∑
j=1

Eninj (ri, rj , ψi − ψj) , (10)

where a particle number n = n(n) = Σp
i=1ni, p is a number of rings for a configuration

c = (n, r, ψ). The numerical analysis [12] demonstrates that

Eni,nj (ri, rj , ψi − ψj) ≈ 〈En,m(ri, rj)〉, (11)

holds for n ≤ 2000 with a high accuracy. The equilibrium configuration of particles can be
obtained by minimizing Eq.(10) with respect to (p,n, r), i.e., finding the partition corresponding
to the lowest total energy. For a given partition, the set of equations that determines the optimal
radiuses (ri, i = 2, . . . , p) is

r2
i

p∑
j=i+1

nj E((rj/ri)
2)

rj2 − r2
i

+ ri

i−1∑
j=1

nj

(rj E((ri/rj)
2)

r2
j − r2

i

− K((ri/rj)
2)

rj

)
=
π

8
Sni , (12)

where K = X−1, E = X1 are complete elliptic integrals of first (second) kind:Xp(x) =∫ π/2
0 dt (1− x sin2 t)−p/2.

It is enough a few iterations of Eq.(12) to reach an optimal energy configuration (10) for
a given partition. Making a grid of different partitions one can readily find the equilibrium
configuration for a total number n.

4. Structure of magic configurations
The minimization of energy with respect to the ring’s partition numbers n leads to the following
”magic configurations”:

11 : 11
29 : 6 23
55 : 5 13 37
90 : 5 12 20 53
135 : 5 12 19 29 70
186 : 5 12 19 26 37 87
246 : 5 12 18 25 34 46 106
316 : 5 11 18 25 33 42 56 126
394 : 5 11 18 25 32 40 50 66 147

(13)

These configurations are characterized with complete p shells. For example, for n = 394 we
obtain p = 9 filled shells. The addition of one electron creates a centered core configurations
with a number of electrons 6k, k = 1, 2, 3 . . ., starting from the one particle in the center

12 : 1 11
30 : 1 6 23
56 : 1 6 12 37
92 : 1 6 12 20 53
136 : 1 6 12 19 28 70
187 : 1 6 12 18 26 37 87
248 : 1 6 12 18 25 34 46 106
317 : 1 6 12 18 25 32 42 55 126
395 : 1 6 12 18 24 32 40 50 65 147.

(14)
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As a result, a new shell appears which is filling by electrons. The sequence of electrons in
the filled shells of the centered core configurations is a characteristic property of the hexagonal
lattice. It signals on the onset of the crystalliztion in the disk geometry for n ≥ 200.

5. Asymptotic limit: n� 1
The density of the hexagonal lattice is defined as ρ = c/a2e, where c = 2/

√
3 and a is the

distance between two nearest neighbor particles. At large n one can define this distance as
a = R/p. As a result, one obtains

ρ = ne/πR2 ⇒ p2 ≈
√

3

2π
× n (15)

To consider the density of the ring we employ the factorization of %: %(r, φ) = ρ(r) × (2π)−1

which leads to a normalization of a radial integral: Q =
∫ R

0 drr ρR(r).
The distribution ρR(r) can be obtained from the Ritz problem of the minimization of the

Coulomb energy on a two–dimensional disk of radius R. To this aim we consider the functional
G[ρ] = E[ρ]g(V 0

[ρ]) where

E[ρ](r) =

∫ R

0
dr A[ρ](r) ρ(r) =

∫ R

0
dr B[ρ](r) ρ(r), (16)

A[%](r) = c0

∫ r

0
dy yK((y/r)2) %(y), B[%](r) = c0 r

∫ R̄

r
dyK((r/y)2) %(y), (17)

V 0
[ρ] =

∫ R

0
dr r ρ(r). (18)

Hence the variational principle δE[ρ] = 0 gives

0 = (A[%] +B[%])(r) + (E/g) g′(V 0) r , (19)

where c0 = 2/π. Since the integration of r.h.s. over r gives 2E + (E/g) g′(V 0)V 0, the
solution exists only if g(x) = x−2. Denoting Xm(z) = R−2X[%m](z) (X = A,B), where
%m(r) = (r/R)m = zm, we obtain

(
Am(z)

Bm(z)

)
=
∞∑
n=0

Kn

( zm+2

2+2n+m
z hmn (z)

1−2n+m

)
=

(
0

z B̃m(z2)
m+1

)
+

( z2+m Ãm(1)
2+m

−zm+2 B̃m(1)
1+m

)
. (20)

Here

Kn =
((2n− 1)!!)2

22n ((n)!)2
, hmn (z) = z2n − z1+m, (21)

Ãm(z) = 3F2(1
2 ,

1
2 , 1 + m

2 ; 1, 2 + m
2 ; z), B̃m(z) = 3F2(1

2 ,
1
2 ,−

1+m
2 ; 1, 1−m

2 ; z),

are considered for m = 0, 2, . . .. Eq.(20) leads to the following condition

0 = (m+ 1) Ãm − (m+ 2) B̃m(1) =⇒ Am(z) +Bm(z) = (m+ 1)−1 z B̃m(z2). (22)

The l.h.s. is a nontrivial identity fulfilled by generalized hypergeometric functions 3F2.
Expanding % = %(a) in series

%(a) = (Q/R2)×
∞∑
n=0

an (r/R)2n (23)
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and employing Eq.(22), we rewrite Eq.(19) in the form

z

( ∞∑
m=0

am (2m+ 1)−1 B̃2m(z2)− 2 (R/Q2)E[%]

)
Q = 0. (24)

Evidently, z 6= 0, and, therefore, we obtain

E(a) =
Q2

2R
×
∞∑
m=0

am
2m+ 1

, (25)

1 = Q−1Q[%(a)] =
∞∑
m=0

am
2m+ 2

= F0(a), (26)

Fα(a) = R−2α 〈r2α〉ρ =

∞∑
m=0

am
2m+ 2α+ 2

. (27)

We require that the higher order terms in the sums in Eqs.(25) are zeros, and obtain:

F−(2α+1)/2(a) = 0, α = 1, 2, . . . , E(a) =
Q2

2R
× F−1/2(a)/F0(a), (28)

As a result, we have

am = (−1)m
(
−1/2

m

)
. (29)

This result is consistent with the Taylor expansion of

ρR(r) = QR−1(R2 − r2)−1/2. (30)

For finite n, the minimal energy En contains a smooth part. The numerical results are well
fitted by series

E(a,b)(n) ≈ (ne)2

R

(
π

4
+

p∑
k=1

ak/n
k +

q∑
k=1

bk n
−k lnn

)
. (31)

Here, the coefficient a0 = π/4 is found from Eq.(25) , takng into account that

Σ∞m=0 am/(2m+ 1) = π/2. (32)

For finite (p, q), the ”effective coefficients” (a,b) could be fitted by a minimization:

Σnδn
2 , δn = (En − E(a,b)(n))R/(en)2 (33)

In the interval n ∈ [20, 400] a good estimation is obtained for (p, q) = (4, 3), which is(
a

b

)
=

(
76.7756, 1266.32,−617.616,−745.263

−16.9075,−552.892,−1502.45

)
(34)

6. Summary
The zero–harmonic limit, applied for the study of equilibrium states of finite number of
charged particles in a disk, essentially reduces the optimization problem for the ground state
configuration. The proposed method reproduces with a remarkable accuracy the results obtained
with the aid of numerical simulation (see details in [12]).
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