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Abstract. We consider the Dirac equation with an external Yang-Mills gauge field in a
homogeneous space with an invariant metric. The Yang—Mills fields for which the motion group
of the space serves as the symmetry group for the Dirac equation are found by comparison of
the Dirac equation with an invariant matrix differential operator of the first order. General
constructions are illustrated by the example of de Sitter space. The eigenfunctions and the
corresponding eigenvalues for the Dirac equation are obtained in the space R? x S? by a
noncommutative integration method.

Introduction

Exact integration of relativistic wave equations for strong external fields is the topical problem
in studying various effects in quantum field theory and cosmology where the standard S-matrix
method does not work [1].

The main technique for exact integration of the equations is based on the classical method
of separation of variables (SoV) [2, 3, 4]. There are a large number of works dealing with
classification of external fields admitting separation of variables in relativistic quantum equations
(see, e.g., [5] and references therein). In this connection, the integration of relativistic wave
equations with external fields by means of methods other than the SoV method can provide new
possibilities to study the relativistic quantum wave equations for classical and quantum fields
and their interactions.

A new method of exact integration of linear partial differential equations was proposed [6]
and applied to quantum equations [7, 8, 9]. This method differs from the classical SoV method
and uses non-commutative algebras to describe the symmetry operators of the equation under
consideration.

In this work, we consider the non-commutative symmetries of the Dirac equation with the
potential of an external gauge Yang-Mills field on some homogeneous space.

The generators of a Lie transformation group acting on the homogeneous space form a non-
commutative symmetry algebra for the Dirac equation. So a Lie transformation group of the
homogeneous space will be the symmetry group of the Dirac equation. In general, the symmetry
of the Dirac equation breaks down in the presence of an external gauge field. Our aim is to
answer the question: what are the Yang-Mills gauge fields which do not destroy the symmetry
group of the Dirac equation in the homogeneous space? Note that this problem was solved
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for the Klein-Gordon equation [10]. The symmetry of the Dirac equation in the presence of
external gauge fields was also studied by the authors of Refs. [11] and [12]. We adopt natural
units h = ¢ = G = 1, unless stated otherwise.

The paper is organized as follows: In Section 1 we briefly describe the necessary concepts and
notations related to homogeneous spaces [13, 14]. The construction of an invariant differential
operator with matrix coefficients on a homogeneous space is introduced following Refs. [10, 15],
in Section 2.

In Section 3 we present the Dirac equation on a homogeneous space with an invariant metric
tensor in terms of a first-order invariant matrix operator. The spinor connection and the
symmetry operators of the Dirac equation are shown to define the isotropy representation of
a spinor space. The generators of the spinor representation are found explicitly.

Next, in Section 4, we find the gauge potentials of an external Yang—Mills field that do not
change the symmetry algebra of the Dirac equation. For these potentials, the Dirac equation is
presented as a system of equations on a motion group.

An illustration of the general results obtained is given in Section 5 by the example of the
homogeneous space R? ®S? with an invariant metric. The homogeneous space is shown to admit
the external magnetic field preserving the symmetry algebra of the Dirac equation. The spectrum
of the Dirac equation and the corresponding eigenstates are found by a noncommutative
integration method.

In the final Section 6, we find the Yang-Mills gauge fields preserving the symmetry of the
Dirac equation in de Sitter space.

In Section 7 we give our conclusion remarks.

1. An invariant metric on a homogeneous space
Here we provide some basic concepts and notations relevant to the theory of homogeneous spaces.

Let G be a simply connected real Lie group with a Lie algebra g and let M be a homogeneous
space with right action of the group G. For any x € M there exists an isotropy subgroup H, € G.
Denote by H a stationary subgroup of a point g € M, and let h be the Lie algebra of H. The
homogeneous space M is diffeomorphic to the manifold G/H of right cosets Hg, where H is
the isotropy subgroup. The group of transformations G can be regarded as a principal bundle
(G, 7, M, H) with the structure group H, the base M, and the projection map = : G — M.
The Lie algebra g is decomposed into a direct sum of subspaces g = & m, where m ~ T, M is
complement to h.

The coordinates of an arbitrary element of g € G can be written as g = hs(x), h € H,
ie., g4 = (2% h®), where A, B,C,... = 1,...,dimg;a,b,c,... = 1,...,dimM;a, B3,7,... =
1,...,dimb, and s : M — G is a local and smooth section of G.

Let us introduce an invariant metric on the homogeneous space M. Suppose that G is a
non-degenerate Adg-invariant quadratic form on a subspace m C g,

G(X,Y],Z2)+G(Y,[X,Z]) =0, Xebh, Y,Zegy, (1)

where the bar denotes the projection map of the Lie algebra g onto the subspace m. The
quadratic form G defines an invariant inner product Ady on the tangent space T,,M ~ m. By
the action of a Lie group G with right-hand shifts R, (¢ € G) in the homogeneous space M, we
define the inner product throughout the space M as

g (1,7 (2) = G((Ry-1)«r, (Rgfl)*T/), .7 € T,M, x=m(g). (2)

The Adp-invariance (1) is the necessary and sufficient condition for the inner product (2)
to be invariant with respect to the Lie group G action on the homogeneous space M. The
inner product (2) defines an invariant metric gps on the homogeneous space M [14]. From
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(2) we can write down the covariant components of the metric tensor in local coordinates as
(t,9,k,0,...=1,...,dim M)

gij(x) = Gupoi(z, eH)a?(a:, er), Gap=Gleq,e), a,b=1,...,dim M. (3)

Here e, are the fixed basis vectors of the space m, o®(g) = —(Rg)*eb is the basis of right-invariant
1-forms, and e’ are the basis vectors in the dual space m*: (eq, e?) = 6%, and ey is the identity
element of H. The contravariant components of the metric tensor (3) can be represented as

97 (@) = Gni(x, em)m (@, em), G = (Gu)™', nh= (o),

where 7,(g9) = —(Rg)«eq are right-invariant vector fields on the Lie group G. On the basis of
the algebra g, the Adpy-invariance condition (1) takes the form

GaC8y, + GocChy, =0, (4)
where C4 = [ea, ep]” are the structure constants of g.
Let us remark that any non-degenerate symmetric 2-form G satisfying condition (4) defines
an invariant metric gp; on the homogeneous space M.
The metric tensor (3) defines the Christoffel symbols of the Levi-Civita connection as [8, 14]
;k(x) = gca'?(.%',€H)U]i($,€H)77;(CC,€H)— (5)

— of(w ey (@, enr) — Cop0f(, em)op (x, em)ing (@, emr)-

The coefficients I'j, are determined by the components G of the quadratic form G and by the
structure constants of the Lie algebra:

“ 1 o 1 a e e
be — _icbc o iG d [Geccbd + Gebccd] : (6)

Thus, the Levi-Civita connection is defined by the algebraic properties of a homogeneous space
with an invariant metric.

2. Invariant matrix differential operator of the first order
In this section, we consider algebraic conditions for a first-order linear differential operator with
matrix coefficients invariant on the homogeneous space M. We follow Ref. [10], which presents
a study of a more general invariant linear matrix differential operator of the second order was
studied.

Denote by C*°(M, V) and C*°(G, V) two spaces of functions taking values on a linear space
V' and defined on a homogeneous space M and on a transformation group G, respectively.

The functions on the homogeneous space M can be considered as functions defined on the
Lie group G and invariant along the fibers H of the bundle G [14]. In our case, if functions take
values on the vector space V', the space C°°(M, V) is isomorphic to the function space

F={peC®G,V)|plhg) =Uh)glg), heH},

where U(h) is an exact representation of the isotropy group H on V. For an arbitrary function
p € F, we have

p(g9) = plhs(x)) = U(h)p(s(x), g = (z,h). (7)
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Then we can identify ¢(s(x)) with a function ¢ € C°°(M, V). Formula (7) gives an explicit

form of the isomorphism F ~ C*°(M, V). Differentiating (7) with respect to h* and assuming
h = ey, we obtain:
oU(h
O+ Aa)plo) =0, Mg = 20 0

Here A, are generators of the group H in the linear space V. Formula (8) is the infinitesimal
consequence of (7). The isotropy subgroup H is assumed to be connected. Then conditions (7)
and (8) are equivalent.

From (8) we can see that a linear differential operator R leaves invariant the function space

Fif
(M + Aa) Bip(9) = [N + Aas Blp(9) =0, ¢ € F. 9)
Denote by L(F) a space of linear differential operators on C*(G, V) satisfying the condition

Mo + Ao, Rl =0, a=1,...,dimb. (10)

Then, given relation (7), the action of R € L(F) on a function ¢(g) from the space F can be
written as

Rep(g) = U(h) (U™ (R)RU (h)) ¢(s(x))- (11)
Multiplying equation (9) by U~!(h) and taking into account that n,U (k) = —A,U(h), we obtain
U™ (W) e+ A RIU (R)(s(2)) = [0, U~ (W) RU (h)]ip(s(x)) =
o (U™ (R)RU (h)p(s(x))) = 0.
Hence, the operator U~'(h)RU(h) is independent of h and (11) can be presented as

Ro(g) = U(h)Rup(s(2)),  Rar = (U (W)RU(R)) [h=eyr = RU(7)|n=ey; - (12)

A

Thus, for any operator R from L(F) there exists an operator Rjs in a homogeneous space M
which acts on the acts on the functions of the space C*°(M,V). We call Ry the projection
operator, Ry; = m,R. For example, for a linear differential operator of the first order

Ry = Bz, h)0pa + B (2, h)Ope + B(x, h),
the projection is:
RE\}[) =Ry = B(x,eq)0z + BY(x,eq)Ao + B(z,ep). (13)

On the other hand, any linear differential operator Ry; defined on C°°(M, V') corresponds to an
operator R = U(h)RyU~'(h) € L(F). Thus we have the isomorphism L(F) ~ L(C*(M,V))
given by (12).

Let £x(g) be a left-invariant vector field on a Lie group G, X € g. Since the left-invariant
vector fields commute with the right-invariant ones, condition (10) is fulfilled. Using (13), we
find the corresponding operator on the homogeneous space in the form:

X' =méx = % (2)0pa + £ (2, e)Ne, X € g. (14)
It is easy to verify the following commutation relations:

(X, Y] = [U (0)exU(h), U™ &y U(h)]Ih=eyy = U™ (W)[€x, &VIU (M]lh=ey =
U~ (W&x U (W] Ih=eyy = [X, YT
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for all XY, of the form (14), X,Y € g. Consequently, the operators X’ corresponding to the
left-invariant vector fields {x are the generators of a transformation group acting on C*°(M, V).

An operator Ry € L(C*°(M,V)) is invariant under the action of a Lie group of
transformations, if Rj; commutes with X:

[Rar, X'] = [U™Y(h)RU(R), U Y (W)exU (M) |h=eyy = U (B[R, Ex]U (W) |hmey = 0. (15)

From (15) it follows that the operator Ry is invariant with respect to the transformation group

A

if and only if the corresponding operator R € L(F) commutes with the left-invariant vector
fields:

Suppose that RS\}[) € C*(M,V) is a first-order linear differential operator invariant with respect
to the group action. By virue of (16), this operator corresponds to a first-order polynomial of
the right-invariant vector fields:

Ry = B*na(, h) + Bno(h) + B.

The projection map of B*n,(h) is a constant B“A,, which can be removed from the operator

RE\? by changing the variable B = B + B“A,. Therefore, we can put B* = 0 without loss of
generality. Substituting the operator R(;) in condition (10), we get

[na + Aaa R(l)”]:‘ = ([bav Aa]na + ba[nmna] + [B7A04])]:‘ =
[B%, Ay] + B°CE,) na| + + [B, Ao] — B*CE Ag = 0.
bo F B

Also, we have the following system of algebraic equations for the coefficients B* and B:

[Bav Aa] + Bbcl()loc =0, (17)
[B,A.] — B°CP Ag = 0. (18)

Under the conditions (17)—(18), the projection map of R(;) on the homogeneous space yields the
desired form of the first-order invariant linear differential operator:

RY) = 7Ry = Boji(2, em)dyi + Bng (. exr)Aa + B. (19)

Thus, any linear first-order differential operator acting on functions from C*°(M,V) and
invariant with respect to the action of the transformation group has the form (19), where the
matrix coefficients B® and B satisfy the algebraic system of equations (17)—(18).

3. The Dirac equation on a homogeneous space
In this section, we consider the Dirac equation on a four-dimensional homogeneous space M. We
assume that in the four-dimensional homogeneous space M, an invariant metric gp; of signature
(+,—,—,—) and a Levi-Civita connection are given. Denote by Vi a space of spinor fields on
M.

Let us write down the Dirac equation on the space M as an equation on a four-dimensional
Lorentzian manifold M [12] as follows:

(7" @) 9k + Th(@)] = m) () = 0. (20)
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Here V}, is the covariant derivative corresponding to the Levi-Civita connection on M and m is
the mass of the field ¢ € C°(M, V). The Dirac gamma matrices, v¥(x), satisfy the condition

{7i(@),75(2)} = 29i5(x) Ea, (21)

where F4 denotes an identity matrix. The spinor connection I'y(z) satisfies the conditions
Vi +Tk(z),vj(x)] =0, TrT'y(x) = 0 and can be presented in explicit form as [12]:

Di(2) = =1/4(Viy;(2))y ().
We will seek a solution to (21) in terms of a tetrad decomposition:
V@) = A5 (e en), 3 =M@)o} (e, en). (22)

The constant matrices 4% are the tetrad components of v¥(x) and satisfy the system of algebraic

equations
{4*,4"} = 2G™E,. (23)

It follows from (3) that the gamma matrices with subscripts are of the form:
Yi(2) = gij (@)Y (¥) = Auof(z,m),  Ya = Gard"- (24)
The spinor connection is defined by the following theorem.

Theorem 1 Let

[(x) = +*(2)C)(x)
be the spinor connection on a four-dimensional homogeneous space M with an invariant metric
gr - Then we have

) 1, 1 o
D(x) = 4" (a4 g (men)AL) s Ta=— T34, AL =—3GaColi" 4] (25)

Proof. Let us write I'(x) so that the covariant derivative Vv, be expressed in terms of the
Christoffel symbols I' ()

P@) = 17 @1 (@) (07(x) ~ Th(u()) (26)

Substituting the Christoffel symbols (5) and expressions (22) and (24) to (26), we obtain
. 1 casba ;
[(z) = 4T, + icga'y“fyb’yda;?‘(x, eq)nl(z,em).
Using the property (4) of the invariant metric, we reduce the expression Cgaﬁ/bf?d to
ba ba ba 1 b 4
Cga’}/b’}/d = ClglaGdC’ybfyc = _CgoeGdb’Yb’YC = iclglaGdC [7b7 ’YC] = 4AZ
From the chain of equalities
o (, e )l (x, en) = oG (@, ey (x, ) — of (en)ng (x, ) =
8 — (=688 (z, enr) = 15 (x, em),

we easily obtain the required expression (25) for the spinor connection. ®
Thus we can write down the Dirac equation (20) on the homogeneous space M with the
invariant metric gps and the gamma matrices of the form (22):

DY =my, DYy =4 [nl(x,em)0p + Lo + 05 (z, ex)AL] -

The set of matrices A}, determines the spinor representation of the group H in the space Vi.
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Theorem 2 The matrices A?, are the generators of the group H representation on the space

V.

Proof. We clime that the matrices A} satisfy the commutation relations

(A, Af] = O A (27)

Indeed, the commutator of two matrices Aj, and Aj can be written as:

s s 1 s 2bzs 1 s 2bya ~ s A
(A%, A3) = —7CmIA5, 35 = =708, (1A%, 4170 + 47 (A5, 3] - (28)
Using (4), (23), and (24), we find the commutator of A, with the gamma matrices

La 1 b za 1 ax ab z 1 a a N a 2
[Az,’}/ ] = Zcéla[fyb’)/dury ] = icgla <5d’yb -G b’Yd) = 5 <deCba -G bC{ja) Vd = Cbaryb' (29)

In the same way, we obtain for the gamma matrices with subscript indices:
(A% Yal = Caa- (30)

Substitution of (29)—(30) in (28) yields
1 ba
(A3, A3) = 7 (CA.Co — C5iCae) A (31)
The expression enclosed in the parentheses takes the form

«

CleChy — CinCle = |CabClia + CibCils + CnCila] + C,CE, (32)

Applying the Jacobi identity for structure constants to the expression in parentheses, we see
that it vanishes. Substituting (32) in (31), we obtain (27). m

Let us associate the Dirac operator D%/I with an operator Dg using a projection map 7,
similar to (19).

Theorem 3 The Dirac operator D% in the homogeneous space M with the invariant metric
gm can be presented as:

Dy = mDg, D& =i3"na(g) +Ta] € L(Fu) (33)

Proof. Comparing the Dirac operator Dg/[ with the first-order invariant matrix differential
operator (19) on the homogeneous space M, we obtain

B =% B =i5T,. (34)

The Dirac operator DY, in (33) is defined if the coefficients B* and B of the form (34) satisfy

equations (17)—(18). From (29) it follows that the commutator of A and 4% satisfies the first
condition in (17). In this case, condition (18) is reduced to the expression

[0, Ad] = Ch AN, T =4T,. (35)

The commutator of I" and A, can be presented in terms of the commutator [AS,T,]:

(A%, TT = [AL, 70a + °[AG, Tal- (36)
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Using (25), in view of properties (29)—(30), we obtain:
1 bia . 1 b o
(A% Ta] = 7T (1434 Ha + 3103, A ) = — T (Caad™e = ChAa) - (37)
Substituting (37) in (36), we have
1 casbs
[A, T1 = 7 (Caalhe = Cacl'ta + Caplea) 74 e- (38)
From (6) and the Jacobi identity for the structure constants of the Lie algebra g, it follows that
nge ga = nga ge + Cgbrga + Cgacgb' (39)

Substituting (39) in (38), we obtain (35).

Thus, relations (17) and (18) are satisfied. Then the Dirac operator DY, can be obtained as
the projection of the operator Bn, + B, where B* and B are determined by (34), onto M and
we come to the projection map (33). =

From this theorem we immediately obtain

Corollary 1 The generators
X' = €5 (2)0pe + Ex (z,em)Ay, X €9,

of a representation of the Lie algebra g in the space Viy are the symmetry operators of the Dirac
operator D% on the homogeneous space M .

4. The Dirac equation with an external gauge field admitting the motion group of
a homogeneous space as a symmetry group

Here we consider the Dirac equation with an external gauge Yang—Mills field on a homogeneous
space M. Our aim is to find the Yang—Mills potentials for which the Dirac equation admits the
motion group of the homogeneous space as a symmetry group. Let Vi be a set of vector fields
on M transforming according to the fundamental representation of an N-dimensional gauge Lie
group K.

A multiplet of N spinor fields on M can be considered as a space C*°(M, V') of functions on
M which take values on a linear space V = Vg ® V.

The potential A;, ¢ = 1,...,dim M = 4, of the gauge Yang—Mills field takes values in the
Lie algebra ¢ of the gauge group K, A; = gA%(x)T5, where g is the coupling constant and the
generators T; of the gauge group take values in Vi:

[Ta, Ty) = f5T: a,b,c=1,...,N.
Here f(% are the structure constants of the gauge group K.

As a result, the Dirac equation on M with an external non-Abelian gauge field can be written

as

DM¢ =my, Dy = D?WEN + i’?ang(% eH)Aj7

where Ep is an identity matrix on the space Vi .

Let the Dirac equation possess the group of motions G of the homogeneous space M as a
symmetry group. Then, the inclusion of an external non-Abelian gauge potential in the Dirac
operator breaks its the symmetry, in the general case, since the Dirac operator with the external
field, in contrast to D?\/‘,, is no longer an invariant operator:

Dar = 4502 (z, e5)Dys + 4% (05 (z, eq)ASEs + W (z, er)A;) + iTEy. (40)
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We will seek the Yang-Mills potentials A; for which the symmetry group of the Dirac equation
is the group of motions G. In this case, the operator Dj; must be invariant under the group of
motions and can be presented in the form of (19). Comparing (40) with (19), we obtain

B* =44, B=1ilEs, n5(x,em)ha =n5ALEs+1)(z,em)A;, (41)
and, hence, '
né(fUaeH)Aj - 773($7€H)A§7 (42)

where AX take values on the space V. Let us now multiply (42) by J?(:L‘, er) and perform

summation over a. Here 0% (x,ep) is the inverse matrix to 73 (z, err). Considering that

ot (x,en) (w,em) = of (@, em)nf(z,em) — o (. en)ng (en) =

08 — (=08)0 (x, ) = 0 (w, em),
we finally obtain
Aj =08 (z,em)AL. (43)

From (43) it follows that the gauge group K of the potentials A; is isomorphic to the isotropy
subgroup H of the homogeneous space M.
Also, when condition (43) is fulfilled, the generators A, of the representation on the space

Vi ® Vg can be written as:
Ao = ASEy + AE (44)

Substituting (44) in the commutation relations for A, we see that
M Ag] = CluA = (A5, A3] = CLoAT ) By + (AL, AK] = €05 =0,

The expression in parentheses vanishes according to Theorem 1. Consequently, the generators
AE satisfy the commutation relations [AQ,A'E] = CzEAI;. Thus, A¥ are the generators of the
isotropy subgroup H on the representation space Vi of the gauge group K. Then we have:

U(h) = exp(h*ASE,) exp(hPAF) = US(h)U*(h).
For gauge fields of the form (43), the Dirac operator D), takes the form of (19):
Dy = i7" (Eanl(z,em)0; + 1S (2, en)Ao) + iTEq.

Relations (17)—(18) for the coefficients B* and B are the necessary and sufficient conditions
for the operators (19) to be invariant. Substituting (41) in (17)—(18) and taking into account
relations (35), we obtain the condition:

4°CE AN =0, o,B=1,...,dimb. (45)

By virtue of the linear independence of the gamma matrices 4%, this condition is satisfied if
and only if the structure constants CP, are zero. In other words, condition (45) is equivalent to
reductivity of the homogeneous space:

[m,h] C m. (46)

Let us say that a Dirac operator Dj; on homogeneous space M with an invariant metric gps
admits an external gauge field if the motion group of M is the symmetry group of the Dirac
equation. Thus, we have
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Theorem 4 The Dirac operator Dy; admits an external gauge field if and only if the
homogeneous space is reductive.

In this case, the isotropy subgroup H is the gauge group. The potential of the gauge field is
determined by the representation generators A¥ of the subgroup H on Vi (see (43)). Under the
conditions of Theorem 4, the Dirac operator Dj; can be redefined as the projection map of the
operator

A

Dg = i5" (na(9) +T) € L(F). (47)

Comparing (47) and (33), we conclude that the external gauge potential (43) in the Dirac
operator does not change the operator Dg and leads to the replacement

U(h) = U%(h) — U(h) = U*(h)U*(h).

We are now in a position to give the following theorem:

Theorem 5 Let the Dirac equation on a homogeneous space M with an invariant metric gps
and an external gauge field admits a group of motions G as the symmetry group. Then the Dirac
equation is equivalent to the system of equations

Dato(g) = m(g), (o +ASEN + A)w(g) =0, (48)

where D¢ is the Dirac operator without an external gauge field on the Lie group G.

5. The Dirac equation in an R? ® S? space

The homogeneous space M with the transformation group G = R? ® SO(3) and the isotropy
subgroup SO(2) is topologically isomorphic to the Cartesian product of a two-dimensional
plane R? and a sphere S2. Let us introduce a local coordinate system (¢, ,¢,0) on M, where
(t,x) € R?, ¢ € (0,27), and 6 € (0, 7). The invariant metric in the local coordinates is given as

ds? = dt* — ¢ da? — ;' dQ,  dQy = d? + sin6%dp?, ¢ > 0,¢0 > 0. (49)

Denote by {e1, e, e3,e4,e5} a fixed basis of the Lie algebra g = R? x s0(3) of the Lie group G,
where R? = {ey, e2}, 50(3) = {es, €4, €5}. The non-zero commutation relations are
les,ea] = e5, [es,es] =es, [es,e5] = es.

The isotropy subalgebra b is generated by the basis element e5: H = exp(hes), h € (0,27). The
invariant metric (49) is defined by a non-degenerate 2-form G = diag(1, —c1, —c2, —c2) on the
basis {e,}, where ¢; > 0,c3 > 0.

The local coordinates (¢, x, ¢, 0, h) are defined by canonical coordinates of the second kind on
the Lie group G:

g(t,z,0,0,h) = ehes (0= 5 )ea pes prea ter (t,z,0,0) € M, heH. (50)
In the coordinates (50), the right-invariant basis of the 1-forms o (x, h) reads
ol = —dt, o>=—dx, o°= —sinfcoshdd + sinhdf,
ot = —sinfsin hdp — coshdd, o° = — cosbdep — dh.

Since the isotropy subgroup is one-dimensional, the gauge group that does not change the
symmetry of the equation is Abelian. For K = U(1), we take the potential (43) of an external
electromagnetic field:

Ay :A2:A4:0, A3:—€COSG, e €R. (51)
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The potential (51) describes a stationary magnetic field depending on the variable 6 with the
strength tensor ‘ ‘

F = Fyjdz" N da? = —esinfdo A df.
From Theorem 5 it follows that the Dirac equation on the homogeneous space M with the
magnetic field (51) is equivalent to the system of equations

(iﬁ/ana(g) - m)d](g) =0, (_ah + 7;}’3?74 + 5)1/}(9) =0, (52)

202

where 7,(g) are given by

m = _8757 2 = —83;, = _aha

h h
s 0p +sin hdg + cos hcot 00y, ns = — sin

N3 = 8¢ — cos hdg + sin h cot 00),.

sin sin

The left invariant vector fields
§1=0, & =0, & =0y,

n¢
nd

cos gb

n6o

&4 = —cot 0sin 0y + cos POy —|— ——0h, & = —cotlcos@dy — sin ¢y —|— oy,
on the Lie group G provide symmetry operators for the Dirac equation (52).
Let us find the spectrum of the Dirac equation (52). The operators &; and & form an Abelian

algebra R? and allow one to separate the variables ¢ and :

W(g) = e WD £(5.0,h), ig(g) = wip(g), i€ab(g) = j1v(g). (53)

The operators &3, &, and &5 form a Lie algebra so(3). We take into account this symmetry
algebra using the noncommutative integration method [6].
According to this method, we will solve equations (52) together with the system

(€4(9) +Lala M) ¥(9) = 0, (nale) +Tal@. V) ¥(g) =0, (A=3,45).  (54)

We call ls(q,\) the operators of A-representation for the Lie algebra so(3) on the space
L2(Q,du(q)) of functions determined on the Lagrangian submanifold @ of a coadjoint orbit
(K-orbit) of the Lie algebra so(3) [7]. The submanifold @ has the topology of a cylinder:
g=a+iB €Q, ac (0,2r), B € Rl The covector A = (j2,0,0) € 50*(3), jo > 0, parameterizes
a non-degenerate K-orbit. The operators —il4(q, \) are hermitian in Lo(Q, du(q)) with respect
to the inner product

(252 + 1)! dq A dg
272(ja1)? (1 + cos(q —7q))72*!

(1(a), ¥ / Gr@a(@)dpa),  dplq) =

and are given by the following equations [7]:
I3(g, \) = —i(sin(q)0q — jacos(q)), la(g,A) = —i(cos(q)dq + jasin(q)), I5(q,\) = Oy.

In the framework of the non-commutative integration method, the system of equations (54) is
represented as a generalized Fourier transform [8, 9]:

oo

.00 = 3@+ [ $la.d D60, )inta),

Jj2=0
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where D;%,(qﬁ, 6, h) is given by the formula

272 (j!)?
(272)!

32
icosfsin g + sin (h—l—@') (—icosfcos ¢ — cosf cosgsing + sinfsinq) — isin&cosqsin¢> .

Df}%,((b, 0,h) = (sin& cos ¢ + cos (h + q’) (cosqcos ¢ —isinp)—

Substituting (53) in the Dirac equation (52) and taking into account relation (54), we obtain a
system of equations for 1(q, ¢, j2):

(i = 19 +i7%13(d, j2) + 4 a(d, J2) — m) ¥(q, ¢, j2) = O, (55)
. 1 .45, .
<l5(q’,J2) + £73V4 + 6) ¥(g,q',j2) =0 (56)

From (56) it follows that

w(Qa q/7j2) = exp <_ |: ;73;}/4 + 6:| q/> R(Q7w7j17j2)' (57)

1
262
Substituting (57) in the reduced equation (55), we find the linear system of equations

. . A DA . .
(w’yl + iy + <J2 + 2) 7+ eyt + m) R(q,w, j1,j2) = 0. (58)
Finally, from the compatibility conditions for this system, we obtain the following relation
determining the spectrum of the Dirac equation:

w? = jier + [82 + % + J2(j2 + 1)} co +m?.
Note that the spectral parameter j; is continuous because the variable x takes values on the
non-compact space R'. The parameter j, has the physical meaning of an orbital quantum
number and it takes only a discrete set of values. The expression for j3(j2 + 1) corresponds to
the spectrum of the Laplace operator on the sphere S2.

In the context of Kirillov’s coadjoint orbit method [16], the quantization of jo is prescribed
by the condition of integer-valued orbits. Note that this condition is equivalent to the Kostant-
Souriau condition in the context of the geometric quantization method [17].

The basis of solutions for the linear system of equations (58) reads

iyv/ca(j2+1/2)—+/ci _e/e
Ve ivarta i1/ +veiin
2
RSZI(w’jl’jZ) = w'6m ’ RS:_l(wajth) = N w1+m ;
1 0

where the spin index s enumerates the basis vectors. The basis of the original Dirac equation
(52) can be written in the framework of the noncommutative integration method as:

¢7‘(t)x7 ¢7 9) = eii(thrjlt)Dg]é (¢7 Q)R‘ﬁ T = (j07j17j27q) 8)7

. _ (1 ~324 /
Dp(6.0) = [ TN D 0,0, cnanta)

Here 7 denotes the set of quantum numbers for the basis of solutions.
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6. The Dirac equation in de-Sitter space
Consider de Sitter space M as a homogeneous space with de Sitter isometry group of
transformations G = SO(1,4) and an isotropy Lorentz subgroup H = SO(1,3). The space
M is topologically isomorphic to R' x S3 and has constant positive curvature.

The de Sitter group SO(1,4) is a rotation group of the 5-dimensional pseudo-Euclidean space
with the metric G4p = diag(1, —1,—1,—1,—1). The algebra g = s0(1,4) of the de Sitter group
can be defined in terms of the basis {Esp | A < B} by the following commutation relations:

[Ea,Ecp] = GapEpc — GacEpp + GpcEap — GepEac,
where A, B,C,D =1,...,5. The basis E4p can be written as
Euy=eqp, (a<b), Eu5=-¢eq/c, |ea,ep]= 2ea, a,b=1,...,4.

Here the basis e, forms an isotropy subalgebra h = so(1, 3), and ¢ is a parameter defining the
curvature of de Sitter space, R = 12¢2. Define canonical coordinates of the second kind for a
Lie group G by the formula

g(t, z,y, 2, h1, ha, hs, ha, hs, h6) _ 6h66346h56246h4623€h3€14€h26136h16126264€y€3e$626t61' (59)

Here (t,z,y, z) are local coordinates on the de Sitter space M and hg, are local coordinates on
the isotropy subgroup H. The right-invariant 1-forms o®(x,ep) in the canonical coordinates
(59) are written as

12 13

0'“ =¢esinexdt — dhy, o° =¢ecosexsineydt — dhs,
o' = ecosexcoseysinezdt — dhs, o023 = esineydz — dha,
o2t = ecoseysinezdr — dhs, o> = esinezdy — dhg.

For the isotropy subgroup H, we choose generators of a representation on a space V', dimV = 4,
in the form

1
Aab = Z[’Yavpyb]a {fya7fyb} = 2nabE47 77ab = dla'g<17 _17 _17 _1)7 a <b.
The potentials of the external gauge field for which the de Sitter group is the symmetry group
of the Dirac equation are given by

A1 =esinexAio + ecosexsineyAi3 + e cosex coseysinezAy,
Ao = esineylag + e cosey sinezAoy,
Ag = esin52A34, A4 =0.

These potentials define the gauge field strength tensor

Fio = —e2 cosex cos? ey cos? ez, I3 = —e2 cosex cos €Y cos? ezM13, (60)

2 2

Fiy = —e%cosexcoseycosezAiy, Fay = —e2coseycos? 293,

Fyy = —e%coseycosezhoy, Fyq = —c?cosezMsy.

The solutions of the Dirac equation with the external gauge field (60) can be obtained using the
noncommutative integration method [6]. The structure of the K-orbits for the de Sitter group
is rather complicated [16]. Detail consideration of the noncommutative integration method and
exact solution construction for the Dirac equation in the case under consideration is beyond the
scope of the present work and will be the subject of a separate study.
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7. Conclusion remarks

We have obtained the Yang—Mills potentials for which the symmetry group of the Dirac equation
is a group of transformations of a homogeneous space M. Such gauge fields are found by
representation of the Dirac equation in terms of an invariant matrix differential operator of the
first order. The matrix coefficients of this operator satisfy an algebraic system of equations that
is equivalent to the condition that the gauge fields do not change the symmetry of the Dirac
equation, and this is possible if the homogeneous space M is reductive. For the reductive space
M, these gauge fields are determined by the Lie symmetry algebra of the equation. The gauge
group in this case is isomorphic to a subgroup H of the isotropic homogeneous space M.

The noncommutative integration method [6] can be effectively used to construct solutions of
the Dirac equation with the gauge fields (43).

Following this method, we have found the spectrum and the basis of solutions of the Dirac
equation in an R? x S? space with an invariant metric. This is a reductive homogeneous space,
and the potentials (43) describe the external magnetic field. The Dirac equation spectrum is
shown to be represented as a continuous part corresponding to a non-compact subgroup of R and
a part corresponding to the spectrum of the Laplace operator on a two-dimensional sphere S2.
Also, we have obtained explicit formulae for the Yang—Mills potentials conserving the symmetry
group of the Dirac equation in de Sitter space.

Exact solutions of the Dirac equation with the gauge fields of the form (43) can be used to
investigate the effects of vacuum polarization and particle creation in homogeneous cosmological
models [1, 9]. Note that seaking exact solutions to the Dirac equation on homogeneous spaces
is a mathematically attractive problem, but it is far from trivial even when external fields are
absent [1]. On the other hand, the results obtained contribute to the study of mathematical
properties of external fields with internal symmetry.
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