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Abstract. An intriguing and deep analogy between classical and quantum states is revealed
using the notion of positive definite function. By Bochner’s theorem, (classical) positive definite
functions on phase space can be obtained by taking the Fourier transform of probability
measures; similarly, quantum positive definite functions are the image via the Fourier-Plancherel
operator of Wigner quasi-probability distributions. Considering the basic properties of positive
definite functions — classical and quantum — one is led to define a class of semigroups of
operators, the so-called classical-quantum semigroups. It is then natural to wonder whether
they have any physical meaning. It turns out that the classical-quantum semigroups can also be
obtained by dequantizing a certain class of quantum dynamical semigroups, namely, the classical
noise semigroups. This correspondence fits in a more general group-theoretical framework in
which a larger class of quantum dynamical semigroups, the twirling semigroups, can be suitably
dequantized. Connections with quantum information science will be briefly discussed.

1. Introduction and outline

The evolution of an open quantum system — a quantum system interacting with an environment
system or reservoir — is well described by a quantum dynamical semigroup, provided that
suitable assumptions on the nature of such interaction are satisfied (suitable regimes, e.g.,
weak coupling, singular coupling or low density; various approximations, e.g., the Markovian
approximation) [1,2]. Like any other semigroup of operators, a quantum dynamical semigroup
is completely determined by its infinitesimal generator [3]. In the case of a finite-dimensional
open system, this operator has a canonical form, independently derived by Gorini, Kossakowski
and Sudarshan [4], and by Lindblad [5], around the mid-1970s.

Physicists usually prefer to express the fundamental laws and properties ruling the behaviour
of a physical system in ‘infinitesimal form’ (rather than in ‘integrated form’) — e.g., Schréodinger
equation (versus evolution operator), canonical commutation relations (versus commutation
relations in the Weyl form [6]), etc. — and the integrated form is often just a formal expression.
In the case we are considering, the usual approach amounts to fixing the infinitesimal generator
of the evolution of a given open quantum system by writing a suitable master equation. In
this regard, it turns out that the Gorini-Kossakowski-Lindblad-Sudarshan canonical form of the
master equation appears not only when studying the dynamics of a finite-dimensional system,
but in a more general setting — e.g., it is associated with every norm-continuous quantum
dynamical semigroup [5] — and deriving the canonical master equation describing a given open
quantum system is a fundamental task [2]. However, in some noteworthy cases this ‘master
equation approach’ can be reversed by considering directly the integrated form of the evolution:
the semigroup of operators itself is given — in some more or less explicit form — whereas the
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infinitesimal generator (thus, the master equation) can be derived. We will call this point of
view the semigroup approach.

Undertaking the semigroup approach, we will consider a class of semigroups of operators
whose definition stems in a natural and simple way from the notion of positive definite function.
As briefly recalled in sect. 2, here one should actually distinguish two different cases. On one
hand, we have the standard positive definite functions on R", n > 1 — with R" regarded as an
(additive) abelian group — arising in harmonic analysis [7] and probability theory [8,9], and
directly related to the notion of classical state. On the other hand, associated with quantum
states we have the quantum positive definite functions on R?", a notion arising in the context of
the phase-space formulation of quantum mechanics a la Weyl-Wigner-Groenewold-Moyal [10-14]
(which is almost as old as the standard formulation itself), but seems to have been introduced
only in the mid-1960s by Kastler [15], and by Loupias and Miracle-Sole [16,17]. It turns out that
there is a nice interplay between classical and quantum positive definite functions [18], and this
interplay is at the root of the definition of the aforementioned class of semigroups of operators,
that will be therefore called classical-quantum semigroups.

The classical-quantum semigroups, whose mere definition — see sect. 3 — may be regarded
as sort of mathematical curiosity, can actually be considered as quantum dynamical semigroups
‘in disguise’. Otherwise stated, they can be regarded as a nonconventional representation of the
dynamics of certain open quantum systems. The main aim of the present contribution is to give
a precise sense to this claim, and in the rest of this section we will briefly outline the basic ideas
and try to give a sketch of the general picture.

Indeed, a standard quantum dynamical semigroup acts in a Banach space of trace class
operators, where the quantum states are realized by density operators (normalized, positive
trace class operators). However, as already observed, quantum mechanics admits a phase-space
formulation, which ultimately relies on group-theoretical methods; see [19-21] and references
therein. In this formulation, a density operator is replaced with an ordinary function, living on
a (symmetry) group or, more generally, on a homogeneous space of that group. These functions
are often called generalized Wigner functions or quantum tomograms in the literature [19-24].
Of course, the archetypical approach is based on the standard Wigner functions, which amounts
to considering phase-space translations as the relevant symmetry group. It is then natural to
wonder what is the expression of the master equation or of the semigroup of operators, associated
with an open quantum system, in terms of tomograms. Clearly, how unwieldy these expressions
are strongly depends on the class of quantum dynamical semigroups one is considering.

There is a class of semigroups of operators whose definition involves two basic ingredients:
a representation of a locally compact group in a Banach space and a convolution semigroup of
probability measures on that group; see sect. 4 and references therein. We call the semigroups
in this class randomly generated semigroups (RGSs). The class of RGSs contains, in particular,
both ‘classical’ and ‘quantum’ objects. E.g., it contains the semigroups of operators describing
the statistical properties of classical Brownian motion on Lie groups, i.e., the probability
semigroups [25-27].

The mentioned group-theoretical framework of RGSs turns out to be a natural bridge between
quantum mechanics on phase space — formulation that is based on group representation theory,
as recalled above — and the theory of open quantum systems. In fact, for a suitable choice
of the relevant (group, i.e. phase-space translations, and) group representation, by varying the
convolution semigroup of measures involved in the construction one spans the (sub-)class of the
Wigner (quasi-probability) semigroups. The Wigner semigroups act on phase-space functions,
the standard Wigner functions, so by applying the symplectic Fourier-Plancherel transform one
obtains a further class of semigroups of operators. The semigroups in this class turn out to
coincide with the classical-quantum semigroups that are the main topic of the paper.

This way of re-deriving the classical-quantum semigroups simultaneously confirms a profound
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‘group-theoretical nature’ of these semigroups of operators and shows how to generalize their
definition; see sect. 4. This generalization leads to the notion of tomographic semigroup. At
this point, one is ready to recognize that the tomographic semigroups (more precisely, the
proper tomographic semigroups) — hence, in particular, the classical-quantum semigroups (or
the strictly related Wigner semigroups) — can be obtained by transforming via a linear isometry
quantum dynamical semigroups of a certain type, the so-called twirling semigroups, introduced
by Kossakowski in a seminal paper [28]; see sect. 5 and further references therein.

This last step closes our circle of ideas: the classical-quantum semigroups, despite their
extremely simple definition, are quantum dynamical semigroups in disguise, where the disguise
is obtained by a linear transformation mapping operators into phase-space functions. Precisely,
the classical-quantum semigroups are the disguised counterpart of certain twirling semigroups,
the so-called classical-noise semigroups. The origin of such a peculiar denomination for this
class of quantum dynamical semigroups will become clear in sect. 6, where connections with
quantum information science will be established.

Interestingly, not only the probability and the Wigner quasi-probability semigroups, but also
all other semigroups of operators considered here — the tomographic semigroups (in particular,
the classical-quantum semigroups) and the twirling semigroups (in particular, the classical-noise
semigroups) — belong to the class of RGSs.

2. Positive definite functions: classical and quantum

In classical (statistical) mechanics, states are usually realized as probability measures on phase
space — for the sake of notational simplicity, here and in the following we will consider the (1+41)-
dimensional phase space R x R — and the expectation value of an observable f: R x R — R in
the state p is provided by the expression

(Flu= A Rf(q,p) du(q,p), [ € Co(R xR), (1)

where Co(R x R) is the space of continuous real functions on R x R vanishing at infinity. Here
we are thinking of u as a normalized, positive bounded functional on the C*-algebra of classical
observables (whose selfadjoint part is Co(R x R)) but, clearly, formula (1) makes sense for every
p-integrable function f.

If one wants to deal with ordinary functions, rather than with probability measures, the state
(associated with) p can be replaced with its symplectic Fourier transform

i, p) = /R D duld ) = ((dp) o D),
X

(2)
which is a bounded continuous function usually called the characteristic function associated
with p, in the context of probability theory [8,9]. By Bochner’s theorem [7-9], characteristic
functions admit an intrinsic characterization: the convex set that they form (in the vector
space of bounded, continuous C-valued functions on R x R) coincides with the convex set of
normalized, continuous positive definite functions; i.e., with the convex set containing every
continuous complex function g on R x R satisfying

Zﬁ(zj —z;) ¢jcp >0, (positivity) (3)
g,k

— for any finite set
{ZlE(qlapl)a"'aan(anpn)}CRXR (4)
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and arbitrary complex numbers ¢y, ..., ¢, — and normalized in such a way that
1(0) =1, (5)

with 0 = (0, 0) denoting the origin in R x R. It is worth stressing that in the first of conditions (3)
the difference 2;— 2, = (¢ —qk, pj — i) should be regarded as a group operation, where obviously
the (additive) group R xR is involved. Indeed, the notion of positive definite function on a vector
group extends in a natural way to abelian groups [7] and, more generally, to locally compact
groups [29]. In the following, we will denote by C (alternatively, by C) the convex cone of
positive definite functions (respectively, the convex set of normalized positive definite functions)
on R x R.

On the other hand, in quantum mechanics (normal) states are usually realized as density
operators, i.e., as normalized, positive trace class operators in a given Hilbert space. In this
formalism, there is no direct analogue of the notion positive definite function. However, if one
wishes to deal with ordinary functions — as in the classical case, where a state can be represented
by a characteristic function, see (2) — ‘phase-space formulations’ of quantum theory are possible.
The archetype — and, under certain respects, the most remarkable — of these approaches is
mainly due to the pioneering work of Weyl, Wigner, Groenewold and Moyal [10-13], so that we
will call it the WWGM formulation.

Setting h = 1, in the WWGM formulation of quantum mechanics a pure state py, = [1) (9],
Y € L2(R) (Jy| = 1), is (injectively) replaced with a function g, on phase space according to
Wigner’s prescription

polar) =5 [ o(a=3) v(o+3) do. (6)

This recipe, exploiting the spectral decomposition of a positive trace class operator, immediately
extends to any mixed state in L?(R) and, hence, to every trace class operator (by taking
linear superpositions). The (complex Banach) space of functions that one obtains with such
construction will be denoted by LW. The linear space LW contains a convex cone W, formed by
those functions that correspond to positive trace class operators, and W contains the convex set
W formed by the Wigner functions, i.e., the functions associated with density operators. Within
the convex cone W, the Wigner functions are characterized by the normalization condition

lim o(q,p) dgdp = tr(p) = 1, (7)
T—+00 2+p2<r

see e.g. [30], where p € W is the phase-space function associated with a certain state p.

The function g is real and, although not (in general) a genuine probability distribution — it
may also assume negative values — it allows us to express the expectation value of an observable
A in the state p (i.e., (A); = tr(Ap)) as a phase-space integral,

(A), = | Alap)e(a.p) dadp, (8)

where A is another real function suitably associated with the selfadjoint operator A. Due
to the integral formulae (7) and (8), the Wigner function p is often called a quasi-probability
distribution.

Remark 1 To be precise, not all the observables can be realized as ordinary functions in the
WWGM formulation. More generally, they will be suitable distributions (generalized functions),
see [31]. However, such technicalities are not relevant for our purposes.
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It is natural to wonder whether there is any intrinsic characterization of Wigner quasi-
probability distributions — apart from the mere normalization condition (7), which makes sense
within W. Only if such a characterization is possible, the WWGM approach can be regarded
as a fully self-consistent formulation of quantum theory. A simple answer to this question is
provided by a quantum version of Bochner’s theorem (Kastler 1965 [15], Loupias and Miracle-
Sole 1966 [16,17]; also see [32,33]). As in the case of classical states, a Wigner quasi-probability
distribution ¢ admits a remarkable characterization in terms of its symplectic Fourier transform
0. Precisely, a function g: R x R — C is the symplectic Fourier transform of a Wigner function,

0=2mF, o, (9)

if and only if it is continuous, it satisfies the condition

Z o(z; — 2z) elw(2:2;)/2 cjcp, >0, (w-positivity) (10)

g,k
for every finite set {z1 = (q1,p1),---,2n = (¢n,Pn)} C R x R and complex numbers ci, ..., ¢, —
where w: (RxR)x (RxR) — R is the standard symplectic form — and it is suitably normalized:
0(0) = 1. (11)

Remark 2 The symplectic Fourier transform denoted above by F  should be regarded as a
unitary operator in the Hilbert space L2(R x R) — a symplectic Fourier-Plancherel operator —
rather than an integral expression like formula (2). Indeed, as shown in [30], a Wigner function
is square integrable but, in general, it is not integrable (fact that, as the reader may have noted,
is taken into account in the lhs of formula (7)). In order to obtain a unitary operator, we fix
the normalization of 7, as follows:

1 : I ol
(BN =5 | S0 agay, feL®R)NLRXR).  (12)

This explains the factor 27 appearing on the rhs of relation (9).

Remark 3 By the previous facts, a real function g on phase space is a Wigner distribution if
and only if it belongs to L?(R x R) and g := 27 . » 0 is a normalized quantum positive definite
function, i.e., it is a continuous function satisfying the w-positivity condition (10) and normalized
according to (11) (the requirement that ¢ be continuous can be slightly relaxed — see [33] —
but, again, this technical aspect is not relevant here). By contrast, the characteristic function
of a probability measure will be sometimes referred to as a classical positive definite function.

%

In the following, we will denote by Q (alternatively, by Q) the convex cone of quantum
positive definite functions (respectively, the convex set of normalized quantum positive definite
functions) on R x R; namely, Q = 5 W and Q= QW.EPW.

Comparing conditions (3) and (10), the reader should note something more than a formal
similarity. In the latter, the function

(R X ]R) X (R X ]R) E) (31,22) — eiw(zl,ZQ)/2 (13)

should be regarded as a (nontrivial) multiplier for the group R x R [34], the multiplier associated
with the Weyl system and with the integrated form of canonical commutation relations [6],
whereas in the former the trivial multiplier is implicitly involved. Otherwise stated, relation (3)
is a clue of classical commutativity as opposed to quantum non-commutativity which is implicit
in relation (10).
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3. Playing with positive definite functions: classical-quantum semigroups

The convolution pi ® usg of two probability measures p1 and pe (say, on a locally compact abelian
group [29]) is a probability measure too; hence, taking the Fourier transform, by Bochner’s
theorem the point-wise product C; Cs of two positive definite functions C; and Cs in C is again a
positive definite function. To the same conclusion one is led exploiting relation (3) and Schur’s
product theorem [35], according to which the Hadamard product (i.e., the entrywise product) of
two positive (semi-definite) matrices is positive too. What happens if we now take the point-wise
product of a (classical) positive definite function C € C by a quantum positive definite function
Q € Q7 It is immediately clear, by Schur’s product theorem, that C Q is once again a quantum
positive definite function.

Remark 4 Clearly, the point-wise product of two classical positive definite functions, or of a
classical positive definite function by a quantum one, preserves normalization: C,C’ € C, Q €

Q=cceCcoeq

Comforted by the previous results, we can now feel free to play with the point-wise product
of positive definite functions (classical or quantum), without paying attention, for the moment,
to the physical meaning of our mathematical manipulations.

Consider then a semigroup of positive definite functions, i.e., a set {C; };er+ of normalized
(classical) positive definite functions on R x R such that

Ct CS = Ct+3, t,S Z 0, CO = 1, (14)

where C; Cs is a point-wise product. Such semigroups can be completely classified. Indeed,
the (symplectic) Fourier transform of a semigroup of positive definite functions is a convolution
semigroup of probability measures, and convolution semigroups admit a well known classification
related to the Lévy-Kintchine formula [25-27]. Since, for every t > 0, C; is a bounded continuous
function, we can define in L?(R x R) a bounded operator @:t by setting

A~

(€. f)(g:p) = Ci(a.p) f(a,p), feL*RxR). (15)

The set {€;};ep+ is a semigroup of operators:
(i) €, ¢ = Cpyy, t,s >0 (one-parameter semigroup property);
(ii) €y =1 (I denoting the identity operator).

It is now natural to consider the restriction of the semigroup of operators {€; };,cg+ to a linear
subspace of L2(R x R). Indeed, by linear superpositions, one can extend in a natural way the
convex cone Q of quantum positive definite functions on R x R to a complex vector space LQ
which turns out to be a dense linear subspace of L?(R x R). A semigroup of operators {€; };cr+
in LQ is defined as follows. Since the point-wise product of a classical positive definite function
by a quantum positive definite function is again quantum positive definite, we can set

(€, Q)(¢.p) := Cilq,p) Q(g,p), Q €LQ, (16)

where, with a slight abuse of notation, Q here is a linear superposition of quantum positive
definite functions:

Q:QI_Q2+1(Q3_Q4)7 Qla"'7Q4€Q- <17)

It is clear that we have:

&QCcQ ¢QcQ (18)
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Remark 5 It can be shown that the semigroup of operators {@t}teR+ — regarded as the map
t — €, — is continuous; moreover, since |Ci(q,p)| < Ci(0) = 1, it is a contraction semigroup,
ie., HéﬁtH < 1. Similarly, endowing the sets C and LQ with suitable topologies, the semigroups
{Ct }icr+ and {€;};cr+ turn out to be continuous too. In particular, the linear space LQ can be
regarded as the image, via the Weyl (dequantization) map, of the Banach space of trace class
operators, as it will be briefly recalled in sect. 4. However, as already stressed, we will focus on
the main ideas rather than on technical details.

We will call the semigroups of operators {(;:t}teRJf and {€; };cr+ a classical-quantum semigroup
and a proper classical-quantum semigroup, respectively.

4. Classical-quantum semigroups as tomographic semigroups
The mere definition of a classical-quantum semigroup in terms of positive definite functions is
so simple and abstract that the reader may hardly suspect, at first sight, that it has anything
to do with the description of an open quantum system.

To clarify this point, consider the unitary operator 7 (q,p) in L?(R x R) defined by

(T(a,p) f)(@:5) = P77 £(g, p). (19)

The map R X R 3 (¢,p) — T(q,p) is a unitary representation. Assume that {u:}cp+ is the
convolution semigroup of probability measures associated, via the symplectic Fourier transform,
with the semigroup {C;};cr+ of (normalized) positive definite functions which generates the
classical-quantum semigroup (15). Observe now that

¢ f = i IR’f(q,p)f due(q,p), VfeL*RxR), (20)

where the rhs of (20) should be regarded as an integral of vector-valued functions.

Formula (20) shows that a classical-quantum semigroup can be regarded as a particular case
of a class of semigroups of operators constructed in the following way. Given a locally compact
group G, let 20 be a (weakly continuous) representation of G in a real or complex Banach space
J, and let {u}ier+ a convolution semigroup on G. The set {u:[U]}ier+, with w[0]: T — T
denoting the bounded linear operator defined by

[ U = /G V(g) T du(g), V€ T, (21)

is a semigroup of operators, a so-called randomly generated semigroup [36,37].

Remark 6 The representation U is also assumed to be uniformly bounded and, if the Banach
space J is separable, the integral on the rhs of (21) can be regarded as a Bochner integral (in
particular, this is the case of the integral on the rhs of (20)); see [36].

The (selfadjoint) unitary operator % determined by (12) intertwines the representation 7
with a unitary representation S of the group R x R in L?(R x R),

S(q,p) == F,T(q,p) F

sp’

V(g,p) € R xR, (22)

and obviously the same construction as above can be applied to this new representation. Taking
into account the fact that

(S(a,p) f)(@.p) = f(G—q,p—p), feL*RxR) (23)



XXII International Conference on Integrable Systems and Quantum Symmetries (ISQS-22) IOP Publishing
Journal of Physics: Conference Series 563 (2014) 012002 doi:10.1088/1742-6596/563/1/012002

— i.e., § is the regular representation of the group R x R — we obtain the semigroup of operators
(W, = 1]S]: L2(R x R) = L2(R x R) };ep+ (24)

defined by

(20, £) (4, ) =/ (S(aq,p) f)(q,p) dpe(q,p) = f(G—q,p—p)dpe(q,p).  (25)
RxR RxR

One can show, moreover, that the representation 7 satisfies
T(2:p)Q=Q. (26)
From this relation it follows that

T(g,p)LQ=LQ and T(g,p)Q=Q. (27)

The first of relations (27) is coherent with the fact that, as already observed, €; LQ = 1;[T] LQ C
LQ, and hence one can define a further semigroup of operators — the proper classical-quantum
semigroup {€;};cr+ — just by restriction to the Banach space LQ. The second of relations (27)
and relation (26) are then coherent with relations (18).

Relation (26) also implies that

S(g;p) W =1LW, S(g,p)W=W and S(gp)W=W. (28)

Accordingly, we can restrict the semigroup of operators {Qﬁt}teR+ to the Banach space LW,
so obtaining a new semigroup of operators {20;: LW — LW},cg+, which is positive — namely,
2, W C W — and preserves the normalization condition (7), i.e., 20, W c W (thus, we may say
that it is trace-preserving). The semigroups of operators {2, };cp+ and {20;},cp+ will be called
a Wigner semigroup and a proper Wigner semigroup, respectively.

Apart from complete positivity [1], whose role in the theory of open quantum systems was
first recognized by Lindblad [5] (for the sake of simplicity, we will not consider this property
here), positivity and preservation of the trace are the basic features of a quantum dynamical
semigroup. It is then clear that the (proper) classical-quantum semigroups, and the strictly
related (proper) Wigner semigroups, describe the evolution of open quantum systems in terms
of phase-space functions.

It is now worth observing that, in their integral formulation (20), the classical-quantum
semigroups can be suitably generalized. This generalization, which gives rise to a special class of
randomly generated semigroups, the tomographic semigroups [18,36,37], is based on considering
a certain representation of a locally compact group G.

Precisely, let Ag be the modular function on G, and let m: G x G — T — with T denoting
the circle group — be a multiplier for G [34], i.e.,

m(g,e) =m(e,g) =1, VgeaQqG, (29)

and
m (g1, 9293) m (g2, 93) = m(g192,93) m(g1,92), Yg1,92,93 € G. (30)

Associated with the multiplier m, there is a function m: G x G — T defined by

m(g,h) :=m(g,g"'h)* m(g~h,g), Vg,h€G. (31)
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Consider then the map
Tm: G — U(L*(@)) (32)

— with U(L?(G)) denoting the unitary group of the Hilbert space L?(G), of square integrable
functions on G with respect to the left Haar measure — defined by

(Tm(9) ) (h) := Ac(9)? (g, h) fg~ " hg), [eLG), (33)

It turns out that 7y, is a strongly continuous unitary representation [21].
Therefore, for every convolution semigroup {p};cp+ of probability measures on G we have
a randomly generated semigroup associated with the pair (7m, {t }ier+), namely,

T i Tl f = /G Tn0)f dilg), V1 € L2(G). (34)

As anticipated, we call the semigroup of operators {T" };cr+ a tomographic semigroup. The
origin of this term becomes clear when one considers the case where there exists a square
integrable projective representation U of the group G, with multiplier m [38,39]. In this case, one
can define a map 2 that associates injectively a function in L?(G) with every Hilbert-Schmidt
operator — in particular, with every trace class operator — in the carrier Hilbert space of the
representation U [21]. This map should be thought of as a dequantization map. If the group
G is unimodular (e.g., a compact group) — i.e., Ag = 1 — the function ¢ associated with a
density operator p is of the form

o(9) = (25)(9) = dij" tx(U(9)*p), (35)

where d;; > 0 is a normalization constant depending on the representation U and on the
normalization of the Haar measure on G. As mentioned in sect. 1, g is sometimes called the
quantum tomogram associated with p. The range Ran(2) of the dequantization map is a closed
subspace of L2((), invariant with respect to the representation 7y, [21]. Also invariant for T,
is a dense linear subspace of Ran(%), i.e., the image via Z of the trace class operators, and
we will denote this space with 7% (U). As a consequence, we obtain two further semigroups of
operators by restricting {T{" };cr+ to Ran(2) and to 7€ (U). We will call the latter semigroup
a proper tomographic semigroup since it acts on quantum tomograms.

The classical-quantum semigroups fit in this scheme with the following identifications. The
group G has obviously to be identified with the vector group R x R. The representation U is
the Weyl system [6,21], i.e.,

U(g,p) = exp(i(pg — gp)) , (36)

with §, p denoting the position and momentum operators in L2(R). This is a (square integrable)
projective representation,

Ulg+qp+p)=mq,p;q,p) Ula,p) U(q,P), (37)
and the multiplier m is given by
i

5 (a5 —pd)). (38)

m(q,p;q,p) == eXp(
Hence, the associated representation T, coincides precisely with 7, see (19). Although not
immediately clear, it turns out that applying the symplectic Fourier-Plancherel transform to the
expression on the rhs of (35) on gets precisely the Wigner function associated with p (up to a
normalization factor) [20,21]. Moreover, in this case Ran(2) = L%(R x R) [21,40], so that the
proper tomographic semigroup is obtained by restricting the tomographic semigroup {@t}t@w
to the (Banach) space 7% (U) = LQ.
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5. Classical-quantum semigroups as quantum dynamical (twirling) semigroups
In the picture emerging in the previous section, there are two points that still need to be clarified:

e the meaning of the representation 7Ty, characterizing the tomographic semigroups within the
full class of randomly generated semigroups;

e the form that a proper tomographic semigroup assumes once expressed in terms of standard
Hilbert space operators.

These two issues are actually non unrelated as it will become soon evident.

Let p be a probability measure on GG. Denoting by H the carrier Hilbert space of the projective
representation U and by B; () the Banach space of trace class operators in H, we can define a
bounded linear operator

plUVU]: Bi(H) = Bi(H), (39)
where
plUVUl = [ U(9)5U19)" du(o). (40)
G

We call u[U VU] a twirling operator [27]. This bounded operator is a (completely) positive and
trace-preserving map, namely, a quantum channel. The notation UV U has to do with the fact
that the map G 3 g — UV U (g), with

UVU(g): Bi(H) 2 p— Ulg) pU(9)" € Bi(H), (41)

is an isometric representation, i.e., the standard symmetry action of G, on trace class operators,
associated with U. Having once again a group representation at our disposal, we can consider the
corresponding randomly generated semigroups; i.e., for every convolution semigroup {p}cr+
on G we obtain a semigroup of operators {[UVU]};er+ by setting

wlUVU] p = /G UVU(9)  djulg): (42)

Since every twirling operator is a quantum channel, the twirling semigroup {u:[UVU]}icr+ is a
quantum dynamical semigroup [27,36,37]. Clearly, if a probability measure on G is a member
of a convolution semigroup, then a twirling operator associated with this measure is member of
a twirling semigroup.

In order to illustrate the role that the twirling semigroups play in our framework — assuming
that the representation U is square integrable — let us dequantize them. To this aim, it
is fundamental to observe that the dequantization map & associated with U, satisfies the
intertwining relation

GUNVU(G)p=Talg) 7, Vi € By(H). (43)
It follows that, for every t > 0, we have:
2 mlUVU]p =37 p. (44)

Therefore, the representation T, is (a natural extension to L?(G) of) the quantum symmetry
action of G on the tomograms living in J%(U) C Ran(¥), and the proper tomographic
semigroup is nothing but a twirling semigroup expressed in terms of such tomograms.
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6. Conclusions and connections with quantum information science
In classical statistical mechanics, there is a natural one-to-one correspondence between states,
realized as probability measures on phase space, and positive definite functions. The latter
are usually more convenient to deal with, since they are ordinary C-valued functions, rather
than measures that are in general quite abstract objects. A similar correspondence arises in
the context of the WWGM formulation of quantum mechanics, where the quantum positive
definite functions can be obtained as symplectic Fourier-Plancherel transforms of Wigner quasi-
probability distributions on phase space. We have shown that there is a natural notion of
semigroup of (classical) positive definite functions, and by this notion one is led to define a
class of semigroups of operators, the classical-quantum semigroups. The physical content of
these abstract mathematical objects becomes clear as soon as one realizes that they can be
regarded as the dequantized counterpart of a certain class of quantum dynamical semigroups,
the classical-noise semigroups.

This term is borrowed from quantum information science, where a classical-noise channel is
a completely positive, trace-preserving map ¢ of the form

= [ D) pDE) () (45)

where v is a Gaussian probability distribution and D(z) := exp(zal —Za) — with af, a denoting
the creation and annihilation operators — is known in the context of quantum optics as the
displacement operator [41,42]; i.e., with the standard identifications the map C 3 z — D(z) is
nothing but the Weyl system (36). This class of Gaussian quantum channels has been studied
extensively; in particular, estimates of the channel capacity and of the minimum Rényi and
Wehrl output entropies have been investigated, see [43,44] and references therein.

Therefore, assuming that the twirling semigroup {u:[UVU]};cr+ is defined identifying
the representation U with the Weyl system and {p;};cp+ with a Gaussian convolution
semigroup [27,37] on R x R, we obtain a semigroup of operators which consists of classical
noise channels.

The proper classical-quantum semigroups are contained in a natural way in the class of
proper tomographic semigroups. Also this larger class of semigroups of operators may be
thought of as the dequantized version of certain quantum dynamical semigroups, namely, the
twirling semigroups associated with square integrable representations. It is worth mentioning
that the twirling semigroups acting in finite-dimensional spaces are of particular interest in
quantum information science because these semigroups of operators are formed by random
unitary maps [27,37], i.e., by quantum channels that are perfectly corrigible, according to the
definition given by Gregoratti and Werner [45].
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