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Abstract. We study a family of fermionic oscillator representations of the Virasoro algebra

via 2-point-local Virasoro fields on the Fock space F⊗
1
2 of a neutral (real) fermion. We obtain

the decomposition of F⊗
1
2 as a direct sum of irreducible highest weight Virasoro modules with

central charge c = 1. As a corollary we obtain the decomposition of the irreducible highest
weight Virasoro modules with central charge c = 1

2
into irreducible highest weight Virasoro

modules with central charge c = 1. As an application we show how positive sum (fermionic)
character formulas for the Virasoro modules of charge c = 1

2
follow from these decompositions.

1. Introduction
This paper is a continuation of [Ang14], and is a part of a series studying various particle
correspondences in 2 dimensional conformal field theory from the point of view of chiral algebras
(vertex algebras) and representation theory. The study of fermionic oscillator representations of
the Virasoro algebra (V ir) is long-standing, dating back to [Fre81], [FF83], [GOS85], [GNO85],
[GKO86], [KR87], [FFR91], and many others. What was new in [Ang14] is that we used 2-
point-local (local at both z = w and z = −w as opposed to just local at z = w) Virasoro fields
generating the fermionic oscillator representations. In particular, in [Ang14] we constructed a
2-parameter family (depending on parameters λ, b ∈ C) of 2-point-local Virasoro fields with

central charge −2 + 12λ − 12λ2 on the fermionic Fock space F⊗
1
2 of the real fermion. In this

paper we study the nature of these representations depending on the parameters, and their
decomposition into irreducible modules. We show that for particular choices of the parameters
(λ, b) these two-point local Virasoro field representations can produce each one of the well known
discrete series of Virasoro representations. Another important and interesting particular case
of the parameters is that of λ = 1

2 , i.e., central charge 1, and b ∈ 1√
2
Z. For this choice of

(λ, b) we obtain the decomposition of F⊗
1
2 into irreducible highest weight modules for V ir of

central charge 1. It is well known (going back to D. Friedan and I. Frenkel) that F⊗
1
2 is a

natural highest weight module for V ir of central charge 1
2 via a one-point local Virasoro field,

and as such it decomposes into two irreducible highest weight modules for V ir of central charge
1
2 (these are well known as two of the Ising minimal models). We show how each of these

irreducible V ir highest weight modules of central charge 1
2 decomposes into irreducible V ir

highest weight modules of central charge 1. As an application, this allows us to directly write
a positive sum (fermionic) character formula for these irreducible highest weight modules for
V ir of central charge 1

2 . There has been extensive research on positive sum (fermionic) Virasoro
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character formulas, see for instance [KKMM93], [FQ97], [BF00], [Wel05], [FFW08]. Fermionic-
type character formulas are known for all the Virasoro minimal models (the discrete Virasoro
series), although the vertex algebra (field theory) foundation for such character formulas is still
lacking in the general case. It is new here that we obtain these specific fermionic formulas as a
direct result of the decomposition of the charge 1

2 ”1-point-local” modules into charge 1 ”2-point-
local” modules (i.e., we explicitly use multi-local fields and twisted vertex algebra techniques).
We hope that such approach is possible also more generally for the discrete Virasoro series by
using quasi-particle Fock spaces in the place of a single real fermionic Fock space of central charge
1
2 . After bosonising such quasi-particle Fock spaces, the idea is then to obtain a decomposition
of the irreducible modules representing the one-point local Virasoro field of discrete-series-type
central charge into irreducible modules representing multi-local Virasoro fields of charge 1.

2. Notation and background
We use the term ”field” to mean a series of the form

a(z) =
∑
n∈Z

a(n)z
−n−1, a(n) ∈ End(V ), such that a(nv)v = 0 for any v ∈ V, nv � 0. (2.1)

Let
a(z)− :=

∑
n≥0

anz
−n−1, a(z)+ :=

∑
n<0

anz
−n−1. (2.2)

Definition 2.1 (Normal ordered product) Let a(z), b(z) be fields on a vector space V .
Define

:a(z)b(w) := a(z)+b(w) + (−1)p(a)p(b)b(w)a−(z). (2.3)

One calls this the normal ordered product of a(z) and b(w).

Remark 2.2 Let a(z), b(z) be fields on a vector space V . Then : a(z)b(λz) : and : a(λz)b(z) :
are well defined fields on V for any λ ∈ C∗.

Definition 2.3 ([ACJ14]) (2-point-local fields) We say that a field a(z) on a vector space
V is even and 2-point self-local at (1;−1), if there exist n0, n1 ∈ N such that

(z − w)n0(z + w)n1 [a(z), a(w)] = 0. (2.4)

In this case we set the parity p(a(z)) of a(z) to be 0.
We set {a, b} = ab+ ba.We say that a field a(z) on V is 2-point self-local at (1;−1) and odd if
there exist n0, n1 ∈ N such that

(z − w)n0(z + w)n1{a(z), a(w)} = 0. (2.5)

In this case we set the parity p(a(z)) to be 1. For brevity we will just write p(a) instead of
p(a(z)).
Finally, if a(z), b(z) are fields on V , we say that a(z) and b(z) are 2-point mutually local at
(1;−1) if there exist n0, n1 ∈ N such that

(z − w)n0(z + w)n1

(
a(z)b(w)− (−1)p(a)p(b)b(w)a(z)

)
= 0. (2.6)

For a rational function f(z, w), with poles only at z = 0, z = ±w, we denote by iz,wf(z, w)
the expansion of f(z, w) in the region |z| � |w| (the region in the complex z plane outside
the points z = ±w), and correspondingly for iw,zf(z, w). The mathematical background of the
well-known and often used (both in physics and in mathematics) notion of Operator Product
Expansion (OPE) of product of two fields for case of usual locality (N = 1) has been established
for example in [Kac98], [LL04]. The following lemma extended the mathematical background
to the case of 2-point locality (in fact to N -point locality, for N ∈ N):
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Lemma 2.4 ([ACJ14]) (Operator Product Expansion (OPE))
Let a(z), b(w) be 2-point mutually local. Then exists fields cjk(w), j = 0, 1; k = 0, . . . , nj − 1,
such that we have

a(z)b(w) = iz,w

n0−1∑
k=0

c0k(w)

(z − w)k+1
+ iz,w

n1−1∑
k=0

c1k(w)

(z + w)k+1
+ :a(z)b(w) : . (2.7)

We call the fields cjk(w), j = 0, 1; k = 0, . . . , nj − 1 OPE coefficients. We will write the above
OPE as

a(z)b(w) ∼
n0−1∑
k=0

c0k(w)

(z − w)k+1
+

n1−1∑
k=0

c1k(w)

(z + w)k+1
. (2.8)

The ∼ signifies that we have only written the singular part, and also we have omitted writing
explicitly the expansion iz,w, which we do acknowledge tacitly. Often also the following notation
is used for short:

babc = a(z)b(w)− : a(z)b(w) := [a(z)−, b(w)], (2.9)

i.e., the contraction of any two fields a(z) and b(w) is in fact also the iz,w expansion of the
singular part of the OPE of the two fields a(z) and b(w).

The OPE expansion in the multi-local case allowed us to extend the Wick’s Theorem (see
e.g., [BS83], [Hua98]) to the case of multi-locality (see [ACJ14]), and we will use it in what
follows, together with the Taylor Expansion Lemma (see [ACJ14]).

3. The Fock space F⊗
1
2 and 2-point-local field representations of V ir

We recall the definitions and notations for the Fock space F⊗
1
2 as in [Fre81], [DJKM81a], [Kac90],

[Wan99b]; in particular we follow the notation of [Wan99b], [Wan99a].
Consider a single odd self-local field φD(z), which we index in the form φD(z) =∑
n∈Z+ 1

2
φDn z

−n− 1
2 . The OPE of φD(z) is given by

φD(z)φD(w) ∼ 1

z − w
. (3.1)

This OPE completely determines the commutation relations between the modes φDn , n ∈ Z+ 1
2 :

{φDm, φDn } := φDmφ
D
n + φDn φ

D
m = δm,−n1. (3.2)

and so the modes generate a Clifford algebra ClD . The field φD(z) is usually called a “real

neutral fermion field”. The Fock space, denoted by F⊗
1
2 , of the field φD(z) is the highest weight

module of ClD with vacuum vector |0〉, so that φDn |0〉 = 0 for n > 0. This well known Fock space
is often called the Fock space of the free real neutral fermion (see e.g. [DJKM81b], [FFR91],

[KW94], [KWY98], [Wan99a], [Wan99b], [RT12]). F⊗
1
2 has basis

{φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉, |0〉| where nk > · · · > n2 > n1 ≥ 0, ni ∈ Z≥0, i = 1, 2, . . . , k}
(3.3)

We recall the various gradings on F⊗
1
2 . The space F⊗

1
2 has a well known Z2 grading given by

k mod 2,

F⊗
1
2 = F

⊗ 1
2

0̄
⊕ F

⊗ 1
2

1̄
,

where F
⊗ 1

2

0̄
(resp. F

⊗ 1
2

1̄
) denote the even (resp. odd) components of F⊗

1
2 . This Z2 grading can

be extended to a Z≥0 grading L̃, called “length”, by setting

L̃(φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉) = k. (3.4)
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Using the Z2 grading the space F⊗
1
2 can be given a super-vertex algebra structure, as is known

from e.g. [FFR91], [KW94], [Kac98].

In [ACJ13] and [Ang14] we introduced a Z grading dg on F⊗
1
2 by assigning dg(|0〉) = 0 and

dg(φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉) = #{i = 1, 2, . . . , k|ni = odd} −#{i = 1, 2, . . . , k|ni = even}.

Denote the homogeneous component of degree dg = n ∈ Z by F
⊗ 1

2

(n) , hence as vector spaces we

have

F⊗
1
2 = ⊕n∈ZF

⊗ 1
2

(n) . (3.5)

We define the special vectors vn ∈ F
⊗ 1

2

(n) by

v0 = |0〉 ∈ F
⊗ 1

2

(0 ) ; (3.6)

vn = φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉 ∈ F
⊗ 1

2

(n) , for n > 0; (3.7)

v−n = φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉 ∈ F
⊗ 1

2

(−n), n > 0. (3.8)

Note that the vectors vn ∈ F
⊗ 1

2

(n) have minimal length L̃ = |n| among the vectors within F
⊗ 1

2

(n) ,

and they are in fact the unique (up-to a scalar) vectors minimizing the length L̃, such that the
index nk is minimal too (nk is identified from the smallest index appearing). One can view each

of the vectors vn as a vacuum-like vector in F
⊗ 1

2

(n) , see below, and the dg grading as the analogue

of the ”charge” grading.
Note also that the super-grading derived from the second grading dg is compatible with the

super-grading derived from the first grading L̃, as dg mod 2 = L̃ mod 2.

Lastly, we recall the grading degh (from [Ang14])) on each of the components F
⊗ 1

2

(n) for each

n ∈ Z. Consider a monomial vector v = φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉 from F
⊗ 1

2

(n) . One can view

this vector as an ”excitation” from the vacuum-like vector vn, and count the ni that should have
been in v as compared to vn, and also the ni that should not have been in v as compared to vn.
Thus the grading degh (one can think of it as ”energy”) is defined as

degh(v) =
∑
{
⌊nl + 1

2

⌋
| nl that should have been there but are not}

+
∑
{
⌊nl + 1

2

⌋
| nl that should not have been there but are};

here
⌊
x
⌋

denotes the floor function, i.e.,
⌊
x
⌋

denotes the largest integer smaller or equal to x.

Denote by F
⊗ 1

2

(n,k) the linear span of all vectors of grade degh = k in F
⊗ 1

2

(n) .

Recall the Heisenberg algebra HZ with relations [hm, hn] = mδm+n,01, m,n integers. We
proved in [Ang14] (and by the less traditional bicharacter construction in [Ang13]) that each

F
⊗ 1

2

(n) is an irreducible highest weight module for the Heisenberg algebra via a 2-point-local field:

Proposition 3.1 ([Ang13], [Ang14]) The 2-point-local field hD(z) given by:

hD(z) =
1

2
: φD(z)φD(−z) : (3.9)
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has only odd-indexed modes (hD(z) = −hD(−z)), hD(z) =
∑

n∈Z hnz
−2n−1, and has OPE with

itself given by:

hD(z)hD(w) ∼ zw

(z2 − w2)2
∼ 1

4

1

(z − w)2
− 1

4

1

(z + w)2
. (3.10)

Hence its modes, hn, n ∈ Z, generate the Heisenberg algebra HZ. The neutral real fermion Fock

space F⊗
1
2 is thus a module for HZ via this 2-point-local field representation and decomposes

into irreducible highest weight modules for HZ under this action as follows:

F⊗
1
2 = ⊕m∈ZF

⊗ 1
2

(m)
∼= ⊕m∈ZBm, where F

⊗ 1
2

(m)
∼= Bm, Bm ∼= C[x1, x2, . . . , xn, . . . ], ∀m ∈ Z.

(3.11)

Recall the well-known Virasoro algebra V ir, the central extension of the complex polynomial
vector fields on the circle. The Virasoro algebra V ir is the Lie algebra with generators Ln,
n ∈ Z, and central element C, with commutation relations

[Lm, Ln] = (m− n)Lm+n + δm,−n
(m3 −m)

12
C; [C,Lm] = 0, m, n ∈ Z. (3.12)

Equivalently, the 1-point-local Virasoro field L(z) :=
∑

n∈Z Lnz
−n−2 has OPE with itself given

by:

L(z)L(w) ∼ C/2

(z − w)4
+

2L(w)

(z − w)2
+
∂wL(w)

(z − w)
. (3.13)

We denote by M(c, h) the irreducible highest weight V ir module with central charge c ∈ C,
where h ∈ C is the weight of the operator L0 acting on the highest weight vector vh, i.e., M(c, h) is
an irreducible V ir module generated by a vector vh ∈M(c, h) with Cvh = cvh, Lnvh = 0 for any
n > 0, and L0vh = hvh. (Note that in some of the literature such V ir modules are called ”lowest
weight”, instead of ”highest weight”, here we follow the convention of Kac, as in [Kac80], [KR87],
[Kac90]). The seminal paper [FF83] (using the Kac determinant formula, [Kac80]) delineates
the cases where M(c, h) is a quotient by a nontrivial factor of the corresponding Verma module
VM(c, h), as opposed to the ”generic” cases where M(c, h) ∼= VM(c, h).

Denote the formal character of a highest weight module V with highest weight (c, h) to be

chV irq V := trV q
L0 :=

∑
j∈Z+

(dimVh+j)q
h+j ,

where Vh+j is the eigenspace of L0 of weight h+ j.

It is well known that F⊗
1
2 is a module for the Virasoro algebra with central charge c = 1

2 (see

for example [FFR91], [KW94], [Wan99a]) via the 1-point local Virasoro field L1/2(z) given by

L1/2(z) =
1

2
: ∂zφ

D(z)φD(z) : . (3.14)

Furthermore, it is well known that as Vir modules

F
⊗ 1

2

0̄
∼= M

(
1

2
, 0

)
; F

⊗ 1
2

1̄
∼= M

(
1

2
,
1

2

)
; F⊗

1
2 ∼= M

(
1

2
, 0

)
⊕M

(
1

2
,
1

2

)
.

In [Ang14] we proved the following Jacobi identity holds:
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Proposition 3.2 (Corollary to Proposition 3.1) Define the graded dimension (character) of the

Fock space F = F⊗
1
2 as

chF := trF q
L
1/2
0 zh0 .

We have

chF =

∞∏
i=1

(1 + zq2i−1+
1
2 )(1 + z−1q2i−2+

1
2 ) (3.15)

=
1∏∞

i=1(1− q2i)
∑
n∈Z

znq
n
2 qn

2
. (3.16)

By comparing the two identities we get the Jacobi identity

∞∏
i=1

(1− q2i)(1 + zq2i−
1
2 )(1 + z−1q2i−

3
2 ) =

∑
m∈Z

zmq
m(2m+1)

2 . (3.17)

Observe that we can specialize the graded dimension chF to the Virasoro character by evaluating
at z = 1:

Corollary 3.3

chV irq F = chqM

(
1

2
, 0

)
+ chqM

(
1

2
,
1

2

)
=

∞∏
i=0

(1 + q
1
2 qi) (3.18)

=
1∏∞

i=1(1− q2i)
∑
n∈Z

qn
2+n

2 . (3.19)

If we use the q-Pochhammer symbol notation,

(a; q)∞ :=
∞∏
i=0

(1− aqi); (a; q)m :=
m−1∏
i=0

(1− aqi), with (a; q)0 := 1;

we can rewrite the first formula (3.18)

chV irq F = chqM

(
1

2
, 0

)
+ chqM

(
1

2
,
1

2

)
= (−q

1
2 ; q)∞.

The formula (3.18) is well known (going back to I. Frenkel and D. Friedan, as well as [FF83]),
but here we obtain it as a direct evaluation at z = 1 of the formula (3.15). We can refine the
proof of (3.16) from [Ang14] to obtain separate formulas for chqM

(
1
2 , 0
)

and chqM
(
1
2 ,

1
2

)
:

Proposition 3.4

chqM

(
1

2
, 0

)
=

1∏∞
i=1(1− q2i)

∑
n∈Z
n even

qn
2+n

2 ; (3.20)

chqM

(
1

2
,
1

2

)
=

1∏∞
i=1(1− q2i)

∑
n∈Z
n odd

qn
2+n

2 (3.21)
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These formulas have all positive coefficients in their sum, as

1∏∞
i=1(1− qi)

=
∑
k≥0

p(k)qk,

where p(k) is the number of partitions 0 < k1 ≤ · · · ≤ kl of k = k1 + · · · + kl. Such formulas
as (3.20) and (3.21) are called fermionic (see e.g. [KKMM93]), to distinguish them from the
character sums with alternating sign coefficients (as in [RC85]), which are called bosonic.
Proof: We have, as vector spaces, that

M

(
1

2
, 0

)
∼= F

⊗ 1
2

0̄
= ⊕ n∈Z

n even
F
⊗ 1

2

(n) ; M

(
1

2
,
1

2

)
∼= F

⊗ 1
2

1̄
= ⊕ n∈Z

n odd
F
⊗ 1

2

(n) .

We can now use the decomposition of each F
⊗ 1

2

(n) into F
⊗ 1

2

(n,k) by degh. From Proposition 3.1 it

follows that a basis for F
⊗ 1

2

(n,k) is given by the elements v
h,n,~k

= h−kl . . . h−k1vn with indecies

varying with partitions 0 < k1 ≤ · · · ≤ kl of k = k1 + · · ·+ kl. First, we have

L
1/2
0 v0 = L

1/2
0 |0〉 = 0

L
1/2
0 vn = L

1/2
0 φD−2n+1− 1

2

. . . φD−3− 1
2

φD−1− 1
2

|0〉

=

(
(1 +

1

2
) + (3 +

1

2
) + · · ·+ (2n− 1 +

1

2
)

)
vn = (n2 +

n

2
)vn, for n > 0;

L
1/2
0 v−n = L

1/2
0 φD−2n+2− 1

2

. . . φD−2− 1
2

φD− 1
2

|0〉

=

(
(0 +

1

2
) + (2 +

1

2
) + (4 +

1

2
) + · · ·+ (2n− 2 +

1

2
)

)
v−n = (n2 − n

2
)v−n, for n > 0.

Now a direct calculation shows that ([Ang14]):

: hD(w)2 :=: hD(w)hD(w) :=
1

4
: (∂−wφ

D(−w))φD(−w) : +
1

4
: (∂wφ

D(w))φD(w) : − 1

2w
hD(w).

(3.22)
We can calculate by direct use of Wick’s Theorem the OPE between : hD(z)2 : and hD(w), and

thus by use of the equation above the commutator of L
1/2
0 and hD(w); and we obtain that

[L
1/2
0 , hDk ] = −2khDk . (3.23)

Hence

L
1/2
0 v

h,0,~k
= L

1/2
0 h−kl . . . h−k1vn = (2k1 + · · ·+ 2kl) vh,0,~k;

L
1/2
0 v

h,n,~k
= L

1/2
0 h−kl . . . h−k1vn =

(
2k1 + · · ·+ 2kl + n2 +

n

2

)
v
h,n,~k

for n > 0;

L
1/2
0 v

h,−n,~k = L
1/2
0 h−kl . . . h−k1v−n =

(
2k1 + · · ·+ 2kl + n2 − n

2

)
v
h,−n,~k for n > 0.

Now since there are p(k) such elements for partitions 0 < k1 ≤ · · · ≤ kl of k = k1 + · · ·+ kl, we
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have for F
⊗ 1

2

0̄
∼= M

(
1
2 , 0
)

chqM
(1

2
, 0
)

= tr
F
⊗ 1

2
0̄

qL
1/2
0 =

∑
k≥0

p(k)q2k +
∑

n,k∈Z+
n even

p(k)
(
q2k+n

2+n
2 + q2k+n

2−n
2

)

=
∑

k∈Z,k≥0
p(k)q2k ·

1 +
∑
n∈Z+
n even

(
qn

2+n
2 + qn

2−n
2

)
=

1∏∞
i=1(1− q2i)

∑
n∈Z
n even

qn
2+n

2 .

The calculation for F
⊗ 1

2

1̄
∼= M

(
1
2 ,

1
2

)
is even simpler. �

We now turn to the new representations in this paper, the 2-point local Virasoro field

representations on the Fock space F⊗
1
2 . In [Ang14] we proved that besides L1/2(z) there is

a 2-parameter family of 2-point-local Virasoro fields on F⊗
1
2 :

Proposition 3.5 ([Ang14]) The 2-point-local field

L1(z2) :=
1

2z2
: hD(z)hD(z) : (3.24)

has only even-indexed modes, L1(z2) :=
∑

n∈Z L
1
n(z2)−n−2 and its modes Ln satisfy the Virasoro

algebra commutation relations with central charge c = 1:

[Lm, Ln] = (m− n)Lm+n + δm,−n
(m3 −m)

12
.

Equivalently, the 2-point-local field L1(z2) has OPE with itself given by:

L1(z2)L1(w2) ∼ 1/2

(z2 − w2)4
+

2L1(w2)

(z2 − w2)2
+
∂w2L1(w2)

(z2 − w2)
. (3.25)

Furthermore, the 2-point-local field

Lλ,b(z2) := L1(z2) +
1− 2λ

4z2
∂zh

D(z)− b

z3
hD(z) +

(
b+ 1−2λ

4

)2 − 4
(
1−2λ
4

)2
2z4

=
∑
n∈Z

Lλ,bn (z2)−n−2

(3.26)
is a Virasoro field for every λ, b ∈ C with central charge −12λ2 + 12λ − 2. If λ = 1

2 , b = 0,

L
1
2
,0(z2) = L1(z2).

We now turn to the types of V ir representations these 2-point-local Virasoro fields generate on

F⊗
1
2 , depending on the choices of the parameters (λ, b). First, observe that these representations

of V ir, although of course expressible as 2-point local fermionic oscillator representations through
the generating field φD(z) (see (3.22)), are in fact only dependent on the descendent Heisenberg

field hD(z) from Proposition 3.1. It is then immediate that each F
⊗ 1

2

(n) for n ∈ Z is also a

submodule for these 2-point-local V ir representations, and is in fact a highest weight module:

Lλ,bm vn = 0, for any m,n ∈ Z, where m > 0, (3.27)
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and we have for the highest weight vectors vn (n ∈ Z)

Lλ,b0 vn =

(
n2

2
− bn− (

1− 2λ

4
)n+

(
b+ 1−2λ

4

)2 − 4(1−2λ4 )2

2

)
vn

=

((
b+ 1−2λ

4 − n
)2

2
− 2

(
1− 2λ

4

)2
)
vn.

Observe that

c = 1 only for λ =
1

2
; c = −12λ2 + 12λ− 2 < 1 for λ ∈ R \ {1

2
}.

For ”generic” cases of real 0 ≤ c ≤ 1 and h the Verma modules VM(c, h) are irreducible

representations ([Kac80], [FF83]), and for those ”generic” (c, h) we have F
⊗ 1

2

(n)
∼= VM(c, h) =

M(c, h). Furthermore, one is of course interested in the cases where the representation is unitary,
and that leaves only the discrete series (see [FQS84], and e.g. [KR87]), or the case of c = 1 (see

e.g. [Kac80], [FF83], [FQS84], [KR87]). For F
⊗ 1

2

(n) to be of discrete series type we need to have

([Kac80], [FF83], [FQS84], [KR87]):

c = −12λ2 + 12λ− 2 = 1− 6

(m+ 2)(m+ 3)
, for m ∈ Z≥0,

h = hr,s =
((m+ 3)r − (m+ 2)s)2 − 1

4(m+ 2)(m+ 3)
for r, s ∈ Z+, 1 ≤ s ≤ r ≤ m+ 1;

which here gives us

(1− 2λ)2 =
2

(m+ 2)(m+ 3)
.

Now we have to consider for such λ also the highest weight h, which gives us(
b+ 1−2λ

4 − n
)2

2
=

((m+ 3)r − (m+ 2)s)2

4(m+ 2)(m+ 3)
for some r, s ∈ Z+, 1 ≤ s ≤ r ≤ m+ 1;

and thus(
b+ 1−2λ

4 − n
1−2λ
4

)2

= 4 ((m+ 3)r − (m+ 2)s)2 , for r, s ∈ Z+, 1 ≤ s ≤ r ≤ m+ 1.

Hence we can find b ∈ R which will produce a discrete-series-type representation on F
⊗ 1

2

(n) . To

summarize, if the parameters (λ, b) satisfy

(2λ− 1) = ±

√
2

(m+ 2)(m+ 3)
, for m ∈ Z+;

(b− n) = ±2 ((m+ 3)r − (m+ 2)s)± 1

2
√

2(m+ 2)(m+ 3)
, for r, s ∈ Z+, 1 ≤ s ≤ r ≤ m+ 1;

then the submodule F
⊗ 1

2

(n) belongs to the discrete series. Thus we can choose values of the

parameters (λ, b) to produce a 2-point local fermionic oscillator field representation of each of
the discrete series Virasoro modules.
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Next we consider the case of c = 1, i.e., λ = 1
2 . In this case we either have

L
1
2
,b

0 vn =
(b− n)2

2
vn =

m2

4
vn, for some m ∈ Z;

i.e.,

(b− n)2 =
m2

2
, for some m ∈ Z; (3.28)

or the submodule F
⊗ 1

2

(n) is irreducible. It is clear that if for some n1 ∈ Z the parameter b satisfies

(b− n1)2 =
m2

2
, for some m ∈ Z; (3.29)

then for all other n ∈ Z, n 6= n1, we have (b − n)2 6= m2

2 , for any m ∈ Z. Hence if the module

F
⊗ 1

2

(n1 )
is indeed reducible, then for all other n ∈ Z, n 6= n1, F

⊗ 1
2

(n) will be irreducible. Thus, when

λ = 1
2 we either have (b−n)2 6= m2

2 , for any n,m ∈ Z and thus all modules F
⊗ 1

2

(n) are irreducible

(we call such b ”generic”). Or exactly one the modules F
⊗ 1

2

(n1 )
is completely reducible, the others

are irreducible. The general structure of these reducible highest V ir modules with central charge
1 is well known from [FF83] (see also [KR87]), but here we can actually describe explicitly the
singular vectors generating the submodules. We can without loss of generality assume that for

λ = 1
2 the one reducible submodule is F

⊗ 1
2

(0 ) (i.e., b2 = m2

2 , for some m ∈ Z), and thus the other

F
⊗ 1

2

(n) , n 6= 0, are irreducible.

Lemma 3.6 Let λ = 1
2 , b = m√

2
, m ∈ Z is fixed.

Case I. For m ≥ 0, the following vectors in F
⊗ 1

2

(0 ) , indexed by k ∈ Z, k ≥ 0, exhaust all singular

vectors for the two-point local V ir representation on F
⊗ 1

2

(0 ) :

ṽm,0 = v0 = |0〉, for k = 0;

ṽm,k = φD−2(k+m)+1− 1
2

φD−2(k+m−1)+1− 1
2

. . . φD−2m−1− 1
2

φD−2(k−1)− 1
2

φD−2(k−2)− 1
2

. . . φD− 1
2

|0〉, for k > 0.

We have

L
1
2
,m

2

2
j ṽm,k = 0, for any j > 0, k ≥ 0;

L
1
2
,m

2

2
0 ṽm,k =

1

4
(m+ 2k)2ṽ0,k.

Case II. For m < 0, the following vectors in F
⊗ 1

2

(0 ) , indexed by k ∈ Z, k ≥ −m, exhaust all

singular vectors for the two-point local V ir representation on F
⊗ 1

2

(0 ) :

ṽm,−m = v0 = |0〉, for k = −m;

ṽm,k = φD−2(k+m)+1− 1
2

φD−2(k+m−1)+1− 1
2

. . . φD−1− 1
2

φD−2(k−1)− 1
2

. . . φD
2(m−1)− 1

2

φD
2m− 1

2

|0〉, for k > −m.

We have

L
1
2
,m

2

2
j ṽm,k = 0, for any j > 0, k ≥ −m;

L
1
2
,m

2

2
0 ṽm,k =

1

4
(m+ 2k)2ṽ0,k.
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The proof is by direct calculation and we omit it.

Proposition 3.7 Case I. Let λ = 1
2 , b is generic, i.e., b 6= n1 + m√

2
for any m,n1 ∈ Z. Then

as Virasoro modules with central charge c = 1

F
⊗ 1

2

0̄
= ⊕ n∈Z

n even
M
(
1,

(b− n)2

2

)
; F

⊗ 1
2

1̄
= ⊕ n∈Z

n odd
M
(
1,

(b− n)2

2

)
.

Case II. Let λ = 1
2 , b = n1 + m√

2
for some unique m,n1 ∈ Z with n1 even. Then as Virasoro

modules with central charge c = 1

F
⊗ 1

2

0̄
=

⊕ n∈Z
n even
n6=n1

M
(
1,

(m−
√

2n)2

4

)⊕(
⊕ n≥0
n≥−m

M
(
1,

(m+ 2n)2

4

))
;

F
⊗ 1

2

1̄
= ⊕ n∈Z

n odd
M
(
1,

(m−
√

2n)2

4

)
.

Case III. Let λ = 1
2 , b = n1 + m√

2
for some unique m,n1 ∈ Z with n1 odd. Then as Virasoro

modules with central charge c = 1

F
⊗ 1

2

0̄
= ⊕ n∈Z

n even
M
(
1,

(m−
√

2n)2

4

)
;

F
⊗ 1

2

1̄
=

⊕ n∈Z
n odd
n6=n1

M
(
1,

(m−
√

2n)2

4

)⊕(
⊕ n≥0
n≥−m

M
(
1,

(m+ 2n)2

4

))
.

We want to finish by showing an application of the above decomposition to calculating directly a
positive sum (fermionic) representation of the characters of the Virasoro modules M

(
1
2 ,

1
2

)
and

M
(
1
2 , 0
)
. We can pick any b and use the Proposition above, together with the observation that

we have a relation between the highest weights for L
1/2
0 and the highest weights for Lλ,b0 , via the

connection represented by (3.22). In particular for λ = 1
2 , b = 0 we have L

1
2
,0(z2) = L1(z2); and

from (3.22) we have that

L
1/2
0 = 2L1

0 +
1

2
hD0 . (3.30)

Hence we have from Proposition 3.7, Case II with b = 0:

chqM
(1

2
,
1

2

)
= tr

F
⊗ 1

2
1̄

qL
1/2
0 = tr

F
⊗ 1

2
1̄

(q2)L
1
0q

1
2
hD0 =

∑
n∈Z
n odd

chq2M
(
1,
n2

2

)
q

n
2 =

∑
n∈Z
n odd

qn
2+n

2∏∞
i=1(1− q2i)

.

Here we have used the well known character formula chqM
(
1, n

2

2

)
= qn

2/2∏∞
i=1(1−qi)

, for n ∈ Z, n 6= 0,

and we recover the formula (3.21) we obtained earlier.

Similarly, using Case II, b = 0 and the formula for chqM
(
1, m

2

4

)
(see e.g. [RC85]):

chqM
(
1,
m2

4

)
=

1∏∞
i=1(1− qi)

(
qm

2/4 − q(m+2)2/4
)
, for m ∈ Z,
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we get

chqM
(1

2
, 0
)

= tr
F
⊗ 1

2
0̄

qL
1/2
0 = tr

F
⊗ 1

2
0̄

(q2)L
1
0q

1
2
hD0 =

∑
n∈Z
n even
n6=0

chq2M
(
1,
n2

2

)
q

n
2 +

∑
n≥0

chq2M
(
1, n2

)

=
∑
n∈Z
n even
n6=0

qn
2+n

2∏∞
i=1(1− q2i)

+
∑
n≥0

q2n
2 − q2(n+1)2∏∞
i=1(1− q2i)

=
∑
n∈Z
n even
n6=0

qn
2+n

2∏∞
i=1(1− q2i)

+
1∏∞

i=1(1− q2i)

=
∑
n∈Z
n even

qn
2+n

2∏∞
i=1(1− q2i)

.

Note that we could have used a generic b, for instance we have

L
1
2
,− 1

4 (z2) = L1(z2) +
1

4z3
hD(z) +

1

32z4
, L

1
2
,− 1

4
n =

1

2
L
1/2
2n +

1

32
δn,0,

but the resulting character formulas would have been the same.
We want to remark that this application of multi-local Virasoro field representations to

calculating character formulas can be extended more generally to the discrete Virasoro series,
not only to the Ising case of c = 1

2 . The main new idea is to obtain a decomposition of (the
vector space of) the irreducible modules represented by a one-point local Virasoro field of discrete
central charge c = 1− 6

(m+2)(m+3) into irreducible modules represented by a multi-local Virasoro

field of charge 1 (or higher).
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[DJKM81b] Etsurō Date, Michio Jimbo, Masaki Kashiwara, and Tetsuji Miwa. Transformation groups for soliton
equations. VI. KP hierarchies of orthogonal and symplectic type. J. Phys. Soc. Japan, 50(11):3813–
3818, 1981.
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